Главная - Дача
Гигиена воды. Минеральный состав воды. Уникальное строение воды, её свойства и роль в живой природе

Если капельку природной воды нанести на стекло и подождать, пока она испарится, то на месте капли будут видны белые разводы - это кристаллизуются растворимые в воде соли. Содержание солей в природных водах различается в тысячи раз. Например, в литре дождевой воды содержатся единицы, максимум десятки миллиграммов солей. А в литре воды из залива Кара-Богаз-Гол (Каспийское море) - 300 г, почти треть от массы раствора.

Основные (преобладающие) компоненты

В водных растворах подавляющее большинство солей существует в виде ионов. В природных водах преобладают три аниона (гидрокарбонат HCO 3 - , хлорид Cl - и сульфат SO 4 2- ) и четыре катиона (кальций Ca 2+ , магний Mg 2+ , натрий Na + и калий K + ) - их называют главными ионами. Хлорид-ионы придают воде солёный вкус, сульфат-ионы, ионы кальция и магния - горький, гидрокарбонат-ионы безвкусны. Они составляют в пресных водах свыше 90-95 %, а в высокоминерализованных - свыше 99 % всех растворенных веществ. Обычно нижним пределом концентрации для главных ионов считают 1 мг/л, поэтому в ряде случаев, например для морских и некоторых подземных вод, к главным компонентам можно отнести также Br - , B 3+ , Sr 3+ и др. Отнесение ионов K + к числу главных является спорным. В подземных и поверхностных водах эти ионы, как правило, занимают второстепенное положение. Только в атмосферных осадках ионы K + могут играть главную роль.

Однако ионная форма главных компонентов свойственна в полной мере лишь маломинерализованным водам. При увеличении концентрации между ионами усиливается взаимодействие, направленное на ассоциацию, т.е. процесс, обратный диссоциации. При этом образуются ассоциированные ионные пары, например MgHCO 3 + , CaHCO 3 + .

Под влиянием климатических и других условий химический состав природных вод изменяется и приобретает характерные черты, иногда специфические для различных видов природных вод (атмосферные осадки, реки, озера, подземные воды).

Атмосферные осадки из всех природных вод наименее минерализованы, но по химическому составу растворенных в них веществ они не менее разнообразны, чем другие природные воды. Источником их состава являются аэрозоли атмосферы. Ионный состав их довольно разнообразен. При колебаниях средней многолетней минерализации атмосферных осадков в европейской части России в пределах 10-20 мг/л и экстремальных значениях для всей территории 3-4 и 50-60 мг/л ионный состав характеризуется пестротой, причем среди анионов большей частью преобладает SO 4 2- или HCO 3 - , а среди катионов в зависимости от степени удаленности от побережья Ca 2+ или Na + . Непосредственно у побережья при ветре, дующем с моря, в результате ветрового механического выноса солей концентрация хлора в осадках бывает повышенной. По мере удаления от побережья относительная концентрация Cl - падает, а SO 4 2- , Ca 2+ и Mg 2+ , наоборот, повышается. Причиной повышения содержания SO 4 2- и Ca 2+ является обогащение атмосферы аэрозолями континентального происхождения. По мере продвижения в глубь континента часть морских аэрозолей вымывается. Наибольшие изменения испытывает концентрация SO 4 2- . Если увеличение содержания Ca 2+ и Na + связано, скорее всего, с минеральной пылью почв и пород, на поверхности которых всегда присутствуют эти соли, то увеличение содержания SO 4 2- обусловлено, с одной стороны, окислением SO 2 и H 2 S, с другой - поднятием сернокислых солей с засоленных поверхностей.


Не поддаются даже приблизительной оценке громадные количества солевых частиц, поднимаемых с почв, соленых озер, поверхности льда, удобрений и, наконец, выбрасываемых химическими и металлургическими производствами, и выбрасываемые в атмосферу в результате другой деятельность людей, а в дальнейшем вымываемые осадками.

Воды большинства рек принадлежат к гидрокарбонатному классу. По составу катионов эта вода имеет почти исключительно преобладание кальция; гидрокарбонатные воды с преобладанием магния и натрия - крайне редкое явление. Из природных вод гидрокарбонатного класса наиболее распространены воды малой минерализации (суммарное содержание солей до 200 мг/л).

Реки с водой, относящейся к сульфатному классу, сравнительно малочисленны. Они распространены преимущественно в степной полосе и частично в полупустынях. В составе катионов природных вод сульфатного класса, так же как и в водах гидрокарбонатного класса, преобладает кальций. Однако ряд рек сульфатного класса имеет преобладание натрия. По минерализации воды сульфатного класса значительно превосходят воды гидрокарбонатного класса. Речные сульфатные воды с малой (общее количество солей до 200 мг/л) и средней (общее количество солей с 200 до 500 мг/л) минерализацией встречаются сравнительно редко. Наиболее характерна для этих рек повышенная (общее количество солей с 500 до 1000 мг/л), а иногда и высокая (общее количество солей более 1000 мг/л) минерализация воды.

Реки, воды которых относятся к хлоридному классу, встречаются почти так же редко, как и реки, в воде которых преобладают сульфаты. К этой территории относятся преимущественно степные районы и полупустыни. Преобладающими катионами природных вод хлоридного класса являются главным образом ионы натрия. Воды хлоридного класса отличаются высокой минерализацией - свыше 1000 мг/л, реже от 500 до 1000 мг/л.

Приведенная характеристика ионного состава речной воды относится к периоду летней межени. До некоторой степени она характеризует состав и в период ледостава. Существенно иная, значительно меньшая минерализация воды наблюдается в период весеннего половодья.

В распределении ионного состава речной воды на территории России наблюдается определенная закономерность. Имеется общая тенденция к увеличению минерализации воды на большей территории европейской части России с севера на юг и с запада на восток. Зональность ионного состава речных вод объясняется не только действием климатических условий настоящего времени, но и в значительной мере климатом прошлого. Степень выщелоченности почв и пород, наличие в них легкорастворимых солей или засоленность почв - это естественный результат многовекового воздействия соответствующих климатических условий. Нарушают зональность химического состава воды рек на территории России различия состава пород и условий их залегания.




Минерализация и химический состав воды озер в отличие от рек меняется в очень широких пределах. Реки с минерализацией воды свыше 100-200 мг/л, в каких бы условиях они ни находились, - очень редкое явление, в то время как минерализация воды озер бывает от очень низкой, в несколько десятков мг/л (т.е. мало отличающейся от дождевом) до очень высокой 3-3,5% (соляные озера с рассолом до предела насыщенного солями). Различие в минерализации отражается и на ионном составе воды озер. В нем наблюдаются закономерности, которые свойственны и химическому составу речной воды. С увеличением минерализации озерной воды происходит относительный рост ионов в ее составе в такой последовательности: HCO 3 - →SO 4 2- →Cl - ; Ca 2+ →Mg 2+ →Na + . При минерализации до 500-1000 мг/л в составе озерной воды преобладают гидрокарбонатные ионы, свыше 0,1% - чаще всего сульфатные, а по достижении 0,3-0,5% в зависимости от литологических особенностей водосборной площади - сульфатные или хлоридные воды. В составе катионов озерных вод преобладающая роль кальция сохраняется лишь до 0,1-0,2%. При дальнейшем росте минерализации эту роль начинают играть ионы натрия. Ионы магния, так же как и во всех других водах, сохраняют при всех минерализациях промежуточное положение. Причина подобного распределения ионного состава заключается в различной растворимости солей. Подавляющая часть пресных озер, так же как и рек, по составу вод гидрокарбонатно-кальциевые.


Состав морской воды характеризуется большим содержанием солей. Если в водах материкового стока чаще всего наблюдается соотношение концентраций: HCO 3 - > SO 4 2- > Cl - и Ca 2+ > Mg 2+ > Na + или Ca 2+ > Na + > Mg 2+ , то для солоноватых и морских вод, начиная с общей минерализации 1 г/кг, соотношения меняются:: Cl - > SO 4 2- > HCO 3 - и Na + > Mg 2+ > Ca 2+ . Изменение соотношений между нонами от речных к морским водам объясняется последовательным достижением предела растворимости слаборастворимых солей по мере повышения минерализации воды. В сумме ионы и соединения главных компонентов составляют по массе 99,99 % массы всех растворенных в океанской воде минеральных веществ.

Между элементами основного солевого состава океанской воды, между каждым из них и их суммой существует практическое постоянство соотношений концентраций. Окончательно его доказал У. Дитмар, выполнивший полный химический анализ (хлориды, сульфаты, кальций, магний, натрий) 77 проб воды, доставленных из всех океанов с различных глубин экспедицией на "Челленджере": в воде открытого океана независимо от абсолютной концентрации количественные соотношения между главными компонентами основного солевого состава всегда постоянны (закон Дитмара). Под влиянием испарения, атмосферных осадков, образования и таяния льдов изменяется лишь общее количество солей, содержащихся в морской воде, но их соотношения в пределах погрешностей определений практически не меняются. Таким образом, если известно точное отношение общего количества солей и концентраций всех основных компонентов в 1 кг воды к концентрации какого-либо одного ингредиента, то лишь по одному определению можно вычислить полный солевой состав океанской воды. В качестве такого "реперного" ингредиента избрана "хлорность", представляющая собой количество граммов ионов хлора, эквивалентное сумме галогенов (кроме фторидов, которые не осаждаются азотнокислым серебром), содержащихся в 1 кг морской воды (определение Серенсена). Постоянство состава океанской воды слегка нарушается под опресняющим влиянием материкового стока в приустьевых участках и во внутренних морях при затрудненном водообмене с океаном. В составе главных компонентов концентрации катионов кальция и магния, а также сумма концентраций анионов слабых кислот (HCO 3 - , CO 3 2- , H 2 BO 3 -) подвержены более чем на 1 % отклонениям от постоянства соотношении в связи с извлечением карбоната кальция из воды в поверхностных слоях и растворением его на глубинах.

Концентрации микроэлементов настолько малы, что в сумме они не превышают 0,01 % массы всех растворенных солей. Из обобщающей сводки В.В. Гордеева и А.П. Лисицына следует, что в наибольших концентрациях встречаются литий (180 мкг/л), рубидий (120 мкг/л), барий (18 мкг/л), в наименьших - золото (0,004 мкг/л), редкоземельные элементы (менее 0,001 мкг/л), радий (10 -7 мкг/л).

Чем более изолированно море от океана, тем заметнее отличается состав его воды от состава воды в океане. Первостепенное значение имеют условия водообмена с океаном, соотношение объема материкового стока с объемом моря, глубина моря и характер химического состава вод впадающих рек.

Подземные воды отличаются исключительным разнообразием химического состава, в том числе и ионного. Состав воды бывает всех классов, групп и типов. Ионный состав подземных вод прежде всего зависит от условий их формирования и залегания.

Стабилизация pH природной воды

Природная вода способна сохранять значение рН более или менее постоянным, даже если в неё извне попадает определённое количество кислоты или основания. Если в литр дистиллированной воды внести каплю концентрированной соляной кислоты, то рН понизится с 7 до 4. А если каплю соляной кислоты добавить в литр речной воды с рН = 7, показатель почти не изменится. Кислоты и основания, попадающие в природную воду, нейтрализуются растворёнными в ней углекислым газом и гидрокарбонат-ионами:

H + + HCO 3 - ↔ H 2 O + CO 2
OH - + CO 2 ↔ HCO 3 -

Гидрокарбонат-ионы нейтрализуют кислоты, попадающие в водоём с атмосферными осадками или образующиеся в результате жизнедеятельности организмов. С концентрацией гидрокарбонат-ионов напрямую связана устойчивость водоёмов к кислотным дождям. Наиболее чувствительны к ним реки и озёра Карелии, Финляндии, Скандинавии, в водах которых этих ионов практически нет.


Органические вещества

Органическим веществом природных вод называют комплекс истинно растворенных и коллоидных веществ органических соединений. По происхождению органические вещества природных вод могут быть разделены на поступающие извне (с водосборной площади) и образующиеся в самом водном объекте. К первой группе относятся главным образом гумусовые вещества, вымываемые водой из почв, торфяников, лесного перегноя и других видов природных образований, включающих остатки растений, и органические вещества, поступающие с промышленными и хозяйственно-бытовыми сточными водами. Из гумусовых веществ для гидрохимии наибольший интерес представляют гуминовые и фульвокислоты. Обе эти кислоты характерны для гумуса (гумусовые кислоты), они не содержатся в живых растительных и животных тканях. Соотношение между ними в разных торфах и почвах неодинаково. В черноземных почвах преобладают гуминовые, а в подзолистых - фульвокислогы.

Общая концентрация органического вещества в природных водах, изменяясь в широких пределах, бывает наибольшей в болотных водах (в которых при большой концентрации гумусовых веществ она иногда достигает 500 мг/л и более) и реках с болотным питанием, причем болотная вода бывает окрашенной в желтый и коричневый цвет до 300° и выше по платиново-кобальтовой шкале цветности (окраску природной воде придают гуминовые кислоты). Высокая концентрация органического вещества иногда встречается в подземных водах, связанных с нефтеносными месторождениями. Еще большая концентрация может быть в природных водах, загрязненных промышленными и хозяйственно-бытовыми сточными водами. Незагрязненные природные воды обычно содержат мало органических веществ. Например, по Б.А. Скопинцеву, в воде океанов концентрация органического вещества составляет только 2,0-5,4 мг/л (в среднем 3,0 мг/л, а в воде рек в среднем 20 мг/л).

В некоторых поверхностных водах, особенно в реках с болотным питанием, вещества гумусового происхождения являются основной частью химического состава воды. После поступления в хорошо аэрируемые реки, а затем озера и моря органические вещества воды подвергаются изменению, и начатый в почвах процесс окисления завершается для большей их части переходом в простые минеральные соединения. Другая, более устойчивая часть остается и накапливается в водных объектах.

В холодных климатических зонах (тундре) очень мало органических остатков, и там водоёмы почти не содержат гуминовых кислот. А в зоне лесов, особенно хвойных, где органических остатков образуется много и они не успевают полностью разложиться, содержание гуминоных кислот составляет несколько десятков миллиграммов на литр. Гуминовые кислоты не только подкисляют воду в водоёме, но ещё и связывают практически все тяжёлые металлы в прочные комплексные соединения.

Газы в природной воде

Если налить в стакан холодную воду из-под крана и поставить в тёплое место, на стенках появятся пузырьки газа. Газы были растворены в холодной воде и выделились при нагревании (поскольку растворимость газов при нагревании уменьшается). Это кислород, азот и углекислый газ. Растворимость газа в воде обычно падает с повышением температуры, что связано с повышением кинетической энергии молекул газа, способствующей преодолению сил притяжения молекул воды. Все природные воды представляют газовые растворы. Наиболее широко распространены в поверхностных водах кислород O 2 и двуокись углерода CO 2 , а в подземных - сероводород H 2 S и метан CH 4 . Иногда CO 2 в значительных количествах может насыщать также воды глубоких горизонтов. Кроме того, во всех природных водах постоянно присутствует азот N 2 .

Кислород (O 2) находится в природной воде в виде растворенных молекул. Кислород, являясь мощным окислителем, играет особую роль в формировании химического состава природных вод. Кислород поступает в воду в результате происходящих в природе процессов фотосинтеза и из атмосферы. Расходуется кислород на окисление органических веществ, а также в процессе дыхания организмов. Концентрация растворенного кислорода в природных водах колеблется в ограниченных пределах (от 0 до 14 мг/л, при интенсивном фотосинтезе, в полдень, возможна и более высокая концентрация). Вследствие зависимости концентрации кислорода в поверхностных водах от целого ряда факторов его концентрация значительно меняется в течение суток, сезона и года. Так как потребление кислорода сравнительно мало зависит от суточных изменений солнечной радиации, а фотосинтез всецело определяется ею, то в течение дня происходит накопление кислорода, а в темное время суток расходование его. Кислород необходим для существования большинства организмов, населяющих водоемы. Как сильный окислитель кислород играет важную санитарно-гигиеническую роль, способствуя быстрой минерализации органических остатков.

Диоксид углерода (CO 2) находится в воде главным образом в виде растворенных молекул газа CO 2 . Однако часть их (около 1 %) вступает во взаимодействие с водой, образуя угольную кислоту:

CO 2 + H 2 O ↔ H 2 CO 3

Обычно же не разделяют CO 2 и H 2 CO 3 и под диоксидом углерода подразумевают их сумму (CO 2 + H 2 CO 3). В природных водах источником диоксида углерода являются прежде всего процессы окисления органических веществ, происходящие с выделением CO 2 как непосредственно в воде, так и в почвах и илах, с которыми соприкасается вода. К ним относятся дыхание водных организмов и различные виды биохимического распада и окисления органических остатков. В некоторых подземных водах важным источником диоксида углерода являются вулканические газы, выделяющие из недр земли, происхождение которых связано с дегазацией мантии и со сложными процессами метаморфизации осадочных пород, протекающими в глубинах под влиянием высокой температуры. Поэтому часто в подземных водах и источниках глубинного происхождения наблюдается высокое содержание диоксида углерода. Поглощение водой диоксида углерода из атмосферы имеет более важное значение для воды морей и океана и менее значимо для вод суши. Уменьшение содержания диоксида углерода прежде всего происходит при фотосинтезе. При очень интенсивном фотосинтезе, когда отмечается полное потребление газообразного CO 2 , последний может быть выделен из ионов HCO 3 - :

HCO 3 - ↔ CO 3 2- + CO 2

Диоксид углерода расходуется также на растворение карбонатов:

CaCO 3 + CO 2 + H 2 O ↔ Ca(HCO 3) 2

Также расходуется на химическое выветривание алюмосиликатов. Уменьшение содержания CO 2 в воде, особенно в поверхностных водах суши, происходит также при выделении его в атмосферу. Вообще CO 2 атмосферы имеет большое значение для CO 2 содержащегося в поверхностных водах, регулируя его содержание там. Между CO 2 атмосферы и CO 2 поверхностных вод существует непрерывный обмен, направленный на установление между ними равновесия, согласно закону Генри-Дальтона. Поскольку парциальное давление диоксида углерода в атмосфере очень невелико (33 Па), то, несмотря на большую растворимость его (при давлении 1013 гПа и температуре 12 °С до 2166 мг/л), равновесие между водой и атмосферой достигается при очень малом содержании CO 2 в воде. При парциальном давлении CO 2 в атмосфере 33 Па растворимость его в воде будет 2166 0,00033=0,715 мг/л (при 12 °С). Обычно же поверхностные воды суши, в которых протекают различные процессы разложения органического вещества и которые связаны с почвами, имеют большее содержание CO 2 и поэтому выделяют его в атмосферу. Лишь при очень сильном фотосинтезе, когда CO 2 практически исчезает, может происходить поглощение CO 2 из атмосферы. Содержание диоксида углерода в природных водах чрезвычайно разнообразно - от нескольких десятых долей до 3000-4000 мг/л. Наименьшая концентрация CO 2 наблюдается в поверхностных водах, особенно минерализованных (моря, соленые озера), наибольшая - в подземных и загрязненных сточных водах. В реках и озерах концентрация CO 2 редко превышает 20-30 мг/л.

Растворенный молекулярный азот (N 2) - наиболее постоянный газ в природных водах. В высшей степени химически устойчивый и биологически трудно усвояемый, азот, будучи занесен в глубинные слои океана или подземные воды, меняется главным образом лишь под влиянием физических условий (температура и давление). Растворенный в поверхностных водах азот имеет преимущественно воздушное происхождение. Наряду с этим в природе широко распространен азот биогенного происхождения, возникающий в результате денитрификации.

Газ метан (CH4) относится к числу наиболее распространенных газов и подземных водах. В газовой фазе подземных вод почти всегда количественно преобладает азот, двуокись углерода или метан. Основным источником образования метана служат дисперсные органические вещества в породах. Метан и тяжелые углеводороды, нередко встречаются в значительных концентрациях в глубинных подземных водах закрытых структур, связанных с нефтеносными месторождениями. В небольшой концентрации метан наблюдается в природных слоях озер, где он выделяется из ила при разложении растительных остатков, а также в океанических донных отложениях в районах высокой биологической продуктивности.

Газ сероводород (H 2 S) является одним из продуктов распада белкового вещества, содержащего в своем составе серу, и поэтому скопление его часто наблюдается в придонных слоях водоемов вследствие гниения различных органических остатков. В нижних частях глубоких озер и морей, где отсутствует водообмен, часто образуется сероводородная зона. При парциальном давлении сероводорода в атмосфере, равном нулю, длительное присутствие его в поверхностных водах невозможно. Кроме того, он окисляется кислородом, растворенным в воде. В реках сероводород наблюдается лишь в придонных слоях, главным образом в зимний период, когда затруднена аэрация водной толщи. Присутствие сероводорода в природных незагрязненных поверхностных водах - сравнительно редкое явление. Гораздо чаще сероводород присутствует в подземных водах, изолированных от поверхности и в сильно загрязненных поверхностных водах, в которых он служит показателем сильного загрязнения и анаэробных условии.

Мезоэлементы

Кроме главных ионов, содержание которых в воде достаточно велико, ряд элементов: азот, фосфор, кремний, алюминий, железо, фтор - присутствуют в ней в концентрациях от 0,1 до 10 мг/л. Они называются мезоэлементами (от греч. "мезос" - "средний", "промежуточный").

Азот в форме нитратов NO 3 - попадает в водоёмы с дождевой водой, а в форме аминокислот, мочевины (NH 2) 2 CO и солей аммония NH 4 + - при разложении органических остатков.

Фосфор существует в воде в форме гидрофосфатов HPO 3 2- и дигидрофосфатов H 2 PO 3 - , образующихся в результате разложения органических остатков.

Кремний является постоянным компонентом химического состава природных вод. Этому способствует в отличие от других компонентов повсеместная распространенность соединений кремния в горных породах, и только малая растворимость последних объясняет малое содержание кремния в воде. Концентрация кремния в природных водах обычно составляет несколько миллиграммов в 1 л. В подземных водах она повышается и часто достигает десятков миллиграммов в 1 л, а в горячих термальных водах - даже сотен. На растворимость кремния, кроме температуры сильно влияет повышение pH раствора. Сравнительно малое содержание кремния в поверхностных водах, уступающее растворимости диоксида кремния (125 мг/л при 26 °С, 170 мг/л при 38 °С), указывает на наличие в воде процессов уменьшающих ее концентрацию. К ним надо отнести потребление кремния водными организмами, многие из которых, например диатомовые водоросли, строят свой скелет из кремния. Кроме того, кремниевая кислота как более слабая вытесняется из раствора угольной кислотой:

Na 4 SiO 4 + 4CO 2 + 4H 2 O = H 4 SiO 4 + 4NaHCO 3

Способствует неустойчивости кремния в растворе и склонность кремниевой кислоты при определенных условиях переходить в гель. В очень мало минерализованных водах кремний составляет существенную, а иногда и преобладающую часть химического состава воды, несмотря на его малое абсолютное содержание. Присутствие кремния в воде является серьезной помехой в технике, так как при продолжительном кипячении воды кремний образует в котлах очень твердую силикатную накипь.

Алюминий поступает в водоёмы в результате действия кислот на глины (каолин):

Al 2 (OH) 4 + 6H + = 2SiO 2 + 5H 2 O + 2Al 3+

Основной источник железа - железосодержащие глины. Органические остатки (ниже обозначаются как "С"), находящиеся в контакте с ними, восстанавливают железо до двухвалентного, которое медленно вымывается в форме гидрокарбоната или солей гуминовых кислот:

2Fe 2 O 3 + "C" + 4H 2 O + 7CO 2 = 4Fe(HCO 3) 2

Когда вода с растворёнными в ней ионами Fe 2+ вступает в контакт с воздухом, железо быстро окисляется, образуя коричневый осадок гидроксида Fe(OH) 3 . Со временем он превращается в болотную руду - бурый железняк (лимонит) FeO(OH). Карельская болотная руда использовалась в XVIII-XIX столетиях для получения железа.

Синеватая плёнка на поверхности воды - это Fe(OH) 3 , образующийся, когда подземные воды, содержавшие ионы Fe 2+ , вступают в контакт с воздухом. Ее часто путают с масляной пленкой, однако различить их очень легко: у пленки гидроксида железа рваные края. Если поверхность воды слегка взволновать, гидроксидная пленка, в отличие от масляной, не будет переливаться.

Микроэлементы

К этой группе относятся элементы, соединения которых встречаются в природных водах в очень малых концентрациях, поэтому их и называют микроэлементами. Их концентрация измеряется микрограммами в 1 л (мкг/л), а часто имеет и более малые значения. Микроэлементы представляют собой самую большую группу элементов химического состава природных вод, в нее входят все элементы периодической системы, не включенные в предыдущие группы рассмотренных компонентов. Условно их можно разделить на пять подгрупп: 1) типичные катионы (Li + , Rb + , Cs + , Be 2+ , Sr 2+ , Ba 2+ и др.); 2) ионы тяжелых металлов (Cu 2+ , Ag + , Au + , Pb 2+ , Fe 2+ , Ni 2+ , Co 2+ и др); 3) амфотерные комплексообразователи (Cr, Mo, V, Mn); 4) типичные анионы (Br - , I - , F -); 5) радиоактивные элементы. Микроэлементы необходимы для нормальной жизнедеятельности растений, животных и человека. Однако при повышенной концентрации многие микроэлементы вредны и даже ядовиты для живых организмов. Поэтому часто они становятся загрязняющими веществами и концентрация их контролируется. Успешное изучение микроэлементов затруднено не только их малым содержанием в природных водах, но и в сильнейшей мере неясностью формы их присутствия в растворе. Последнее не только осложняет выяснение закономерностей их миграции и режима но и создает трудности при химическом анализе. Например, многие тяжелые металлы мигрируют в больших концентрациях именно во взвешенном, а не в растворенном состоянии. Растворенные органические комплексы образуют большинство металлов, прежде всего двух- и трехвалентные металлы с гуминовыми и фульвокислотами. Концентрация закомплексованных металлов определяется прежде всего концентрацией органических кислот. В виде коллоидных соединений присутствуют многие гидроксиды металлов. Возможно, происходит адсорбция органических веществ на поверхности коллоидов, что придает им большую стабильность в растворе.

Факторы влияющие на химический состав воды

Химический состав природной воды определяет предшествующая ему история, т.е. путь, совершенный водой в процессе своего круговорота. Количество растворенных веществ в такой воде будет зависеть, с одной стороны, от состава тех веществ, с которыми она соприкасалась, с другой - от условий, в которых происходили эти взаимодействия. Влиять на химический состав воды могут следующие факторы: горные породы, почвы, живые организмы, деятельность человека, климат, рельеф, водный режим, растительность, гидрогеологические и гидродинамические условия и пр. Рассмотрим лишь некоторые факторы, влияющие на состав воды.

Почвенный раствор и фильтрующиеся через почву атмосферные осадки способны усиливать растворение пород и минералов. Это одно из важнейших свойств почвы, влияющее на формирование состава природных вод, является результатом увеличения концентрации диоксида углерода в почвенном растворе, выделяющегося при дыхании живых организмов и корневой системы в почвах и биохимическом распаде органических остатков. Вследствие этого концентрация CO 2 в почвенном воздухе возрастает от 0,033 %, свойственных атмосферному воздуху, до 1 % и более в почвенном воздухе (в тяжелых глинистых почвах концентрация CO 2 в почвенном воздухе достигает иногда 5-10 %, придавая тем самым раствору сильное агрессивное действие по отношению к породам). Другим фактором, усиливающим агрессивное действие фильтрующейся через почву воды, является органическое вещество - почвенный гумус, образующийся в почвах при трансформации растительных остатков. В составе гумуса в качестве активных реагентов прежде всего следует назвать гуминовые и фульвокислоты и более простые соединения, например органические кислоты (лимонная, щавелевая, уксусная, яблочная и др.), амины и т.п. Почвенный раствор, обогащаясь органическими кислотами и CO 2 , во много раз ускоряет химическое выветривание алюмосиликатов, содержащихся в почвах. Аналогично вода, фильтрующаяся через почву, ускоряет химическое выветривание алюмосиликатов и карбонатных пород, подстилающих почву. Известняк легко образует растворимый (до 1,6 г/л) гидрокарбонат кальция:

CaCO 3 + H 2 O + CO 2 ↔ Ca(HCO 3) 2

Почти на всей европейской части России (кроме Карелии и Мурманской области) известняки, а также доломиты MgCO 3 CaCO 3 залегают довольно близко к поверхности. Поэтому вода здесь содержит преимущественно гидрокарбонаты кальция и магния. В таких реках, как Волга, Дон, Северная Двина, и основных их притоках гидрокарбонаты кальция и магния составляют от 3/4 до 9/10 всех растворённых солей.

Соли попадают в водоёмы и в результате деятельности человека. Так, хлоридами натрия и кальция зимой посыпают дороги, чтобы растапливать лёд. Весной вместе с талой водой хлориды стекают в реки. Треть хлоридов в реках европейской части России привнесена туда человеком. В реках, на которых стоят крупные города, эта доля гораздо больше.

Рельеф местности косвенно влияет на состав воды, способствуя вымыванию солей из толщи пород. Глубина эрозионного вреза реки облегчает поступление в реку более минерализованных грунтовых вод нижних горизонтов. Этому же способствуют и другие виды депрессий (речные долины, балки, овраги), улучшающие дренирование водосбора.

Климат же, создает общий фон, на котором происходит большинство процессов, влияющих на формирование химическою состава природных вод. Климат прежде всего определяет баланс тепла и влаги, от которого зависит увлажненность местности и объем водного стока, а следовательно, и разбавление или концентрирование природных растворов и возможность растворения веществ или выпадения их в осадок.

Огромное влияние на химический состав воды и его изменение с течением времени оказывают источники питания водного объекта и их соотношение. В период таяния снега вода в реках, озерах и водохранилищах имеет более низкую минерализацию, чем в период, когда большая часть питания осуществляется за счет грунтовых и подземных вод. Это обстоятельство используют при регулировании наполнения водохранилищ и сброса из них воды. Как правило, водохранилища наполняют в период весеннего половодья, когда приточная вода имеет меньшую минерализацию.

Химический состав питьевой воды.

Связь способа водоподготовки и обеззараживания с состоянием здоровья населения

Реферат выполнила:

студентка группы ЛД 15-07

Пучкина А.И.

Научный руководитель: Зуева Т.В.

Введение. 3

1. Химические элементы, входящие в состав воды.. 4

1.1 Индифферентные химические вещества в воде. 4

1.2 Биоэлементы.. 5

2. Гигиенические требования к качеству питьевой воды.. 6

3. Методы очистки воды.. 7

3.1 Отстаивание и коагуляция. 7

3.2 Фильтрация. 8

3.3 Обеззараживание. 10

3.3.1 Хлорирование. 11

3.3.2 Озонирование. 12

3.3.3 Обеззараживание серебром. 13

4. Заболевания, обусловленные необычным минеральным составом природных вод 13

Заключение. 15

Список литературы.. 16


Введение

Являясь источником жизни на планете, вода потребляется всеми живыми существами. Качество питьевой воды, попадающей в организм человека, определяют состояние его здоровья и самочувствия. Самыми чистыми источниками являются естественные, но находящиеся вдали от объектов техногенного засорения экологии. К воде, которая предназначается для употребления внутрь, предъявляются жесткие качественные требования.

Даже самая чистая из природных вод - вода дождевая содержит в одном литре около 30 - 35 миллиграммов сухого остатка. Что касается подземных вод, то они представляют собой растворы с широкой гаммой состава и концентрации примесей. Правильнее будет говорить, что вода - это минерал.

Наша обычная питьевая вода никогда не бывает химически чистой, особенно если она была в контакте с отложениями. Подземные воды (из родников или колодцев) всегда содержат ионы кальция и магния, а зачастую и железа и марганца, а также, положительные заряды этих ионов уравновешиваются отрицательными ионами карбонатов / бикарбонатов, а иногда и некоторых хлоридов и сульфатов.


Химические элементы, входящие в состав воды

Химические вещества условно можно разделить на:

1) биоэлементы (йод, фтор, цинк, медь, кобальт);

2) химические элементы, вредные для здоровья (свинец, ртуть, селен, мышьяк, нитраты, уран, СПАВ, ядохимикаты, радиоактивные вещества, канцерогенные вещества);

3) индифферентные или даже полезные химические вещества (кальций, магний, марганец, железо, карбонаты, бикарбонаты, хлориды).

1.1 Индифферентные химические вещества в воде

1) Железо

двух– или трехвалентное содержится во всех естественных водоисточниках. Железо – необходимая составная часть животных организмов. Оно используется для построения жизненно важных дыхательных и окислительных ферментов (гемоглобина, каталазы). Взрослый человек получает в сутки десятки миллиграммов железа, поэтому количество поступающего с водой железа не имеет существенного физиологического значения. Однако присутствие железа в виде больших концентраций нежелательно по эстетическим и бытовым соображениям. Железо придает воде мутность, желто-бурую окраску, горьковато-металлический привкус, оставляет пятна ржавчины. Большое количество железа в воде способствует развитию железобактерий, при отмирании которых внутри труб накапливается плотный осадок.

2) Марганец

в подземных водах содержится в виде бикарбонатов, хорошо растворимых в воде. В присутствии кислорода воздуха превращается в гидроокись марганца и выпадает в осадок, чем усиливает показатель цветности и мутности воды. В практике централизованного водоснабжения необходимость ограничения содержания марганца в питьевой воде связывается с ухудшением органолептических свойств.

3) Алюминий

содержится в питьевой воде, подвергшейся обработке – осветлению в процессе коагуляции сернокислым алюминием. Избыточные концентрации алюминия придают воде неприятный, вяжущий привкус. Остаточное содержание алюминия в питьевой воде (не более 0,2 мг на л) не вызывает ухудшения органолептических свойств воды (по мутности и привкусу).

4) Кальций

и его соли обуславливают жесткость воды. Жесткость питьевой воды является существенным критерием, по которому население оценивает качество воды. В жесткой воде овощи и мясо плохо развариваются, так как соли кальция и белки пищевых продуктов образуют нерастворимые соединения, которые плохо усваиваются. Затруднена стирка белья, в нагревательных приборах образуется накипь (нерастворимый осадок

1.2 Биоэлементы

1) Медь

в малых концентрациях встречается в природных подземных водах и является истинным биомикроэлементом. В больших концентрациях (3-5 мг/л) медь оказывает влияние на вкус (вяжущий).

2) Цинк

в качестве микроэлемента встречается в природных поземных водах. В больших концентрациях он встречается в водоемах, загрязненных промышленными сточными водами. При содержании 30 мг/л вода приобретает молочный цвет, а неприятный металлический вкус исчезает при 3 мг/л, поэтому нормируют содержание цинка в воде не более 3 мг/л.


2.
Гигиенические требования к качеству питьевой воды

В РФ оценка качества питьевой воды при децентрализованной системе водоснабжения производится на основании санитарных правил и нормативов СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды децентрализованного водоснабжения. Санитарная охрана источников». Санитарные правила устанавливают гигиенические требования к качеству воды источников децентрализованного (местного) водоснабжения.

Децентрализованным водоснабжением является использование для питьевых и хозяйственных нужд населения воды подземных источников, открытых для общего пользования без подачи её к месту пользования.

Использование природных вод открытых водоёмов для хозяйственно-питьевого водоснабжения требует предварительного улучшения свойств воды и её обеззараживания. Средства по улучшению качества воды включают в себя методы очистки воды, улучшающие органолептические свойства воды, и методы её обеззараживания, целью которых является уничтожение патогенных микроорганизмов, т. е. обеспечение эпидемиологической безопасности воды.

Методы очистки воды

3.1 Отстаивание и коагуляция

Самым простым и доступным для всех методом очистки питьевой воды является отстаивание водопроводной воды. При этом в течение определенного времени улетучивается остаточный свободный хлор (Сl2), который применяют в системах водозабора для обеззараживания воды. Кроме того, под действием гравитационных сил происходит осаждение относительно крупных суспензионных и коллоидных частиц, находящихся во взвешенном состоянии. В некоторых случаях осадок «желтеет».

Коагуляция – образование и осаждение в жидкой фазе гидроксидов железа или алюминия с адсорбированными на них коллоидами загрязнений стоков и соосажденными гидроксидами тяжелых металлов.

При коагуляции в обрабатываемые стоки вводятся специальные реагенты, при взаимодействии которых с водой образуется новая малорастворимая высокопористая фаза, как правило, гидроксидов железа или алюминия. Происходит также соосаждение тяжелых металлов, по свойствам близких к вводимому в раствор коагулянту. Этот метод широко распространен в водоподготовке. Образующиеся хлопья размером 0,5–3,0 мм имеют очень большую поверхность с хорошей сорбционной активностью. В процессе ее образования и седиментации в структуру включаются взвешенные вещества, коллоидные частицы и та часть ионов загрязнений, которые ассоциированы на поверхности этих частиц.

Современные коагулянты на основе гидроксохлорида – полигидроксохлорид, гидроксохлорсульфат алюминия, Аква-Аурат и т. п. – позволяют существенно повысить качество и интенсифицировать процесс очистки сточных вод. Для повышения эффективности процессов коагуляции и реагентного осаждения широко используется полиакриламид.

Сократить объем используемого оборудования и расход реагентов позволяет так называемая контактная коагуляция. Она реализуется при введении раствора коагулянта перед механическим фильтром воды. В этом случае зерна загрузки и адсорбированные на них частицы служат центрами коагуляции – «затравкой». При этом резко ускоряется процесс роста хлопьев, которые образуются непосредственно на зернах загрузки и, соответственно, отпадает необходимость в их отстаивании. Процесс очистки сточных вод ускоряется в десятки раз.

3.2 Фильтрация

Фильтрация - задержка нерастворимых твердых частичек определенной величины происходит в порах микропористой структуры полимерного или керамического фильтра. Дальнейшая очистка заключается в удерживании порами сорбента (чаще всего активированного угля, приготовленного особыми методами) органических молекул (в т.ч. стиральных порошков), остатков хлора и других газов, некоторых тяжелых металлов и т.д.

При эксплуатации таких систем необходимо следить, чтобы выходные части фильтров не зарастали бактериальными пленками, которые могут вызвать вторичное заражение очищенной воды.

Медленные фильтры. Это емкости, заполненные песком. Профильтрованная вода отводится через дренаж в нижней части емкости. Такой фильтр должен «созреть», т.е. должна образоваться активная биологическая пленка, состоящая из адсорбированных взвешенных частиц, планктона и бактерий в верхней части песчаного слоя.

К несомненным достоинствам медленных фильтров относятся равномерная, близкая к естественной, фильтрация, при которой задерживание бактерий достигает 99%, а также простота устройства. Но фильтрация в таких фильтрах происходит очень медленно и составляет лишь 10 см вод. ст/ч.

Для городского водоснабжения используются скорые фильтры . Это бетонные резервуары с двойным дном. Нижнее дно сплошное, а верхнее перфорированное, что обеспечивает дренажные свойства фильтра. Вода для фильтрации подается сверху и отводится снизу через дренажное пространство. Производительность обычных скорых фильтров приблизительно в 50 раз выше, чем медленных, и достигает 5 м³/ч, что является несомненным преимуществом. Однако и загрязнение фильтрующего слоя происходит в скорых фильтрах значительно быстрее. Несколько ниже у них и способность задерживать бактерии, которая составляет 95%.

Еще большей производительностью обладают модернизированные скорые фильтры с двухслойной загрузкой . В них верхний фильтрующий слой представлен антрацитовой крошкой, а нижний – кварцевым песком. Благодаря образованию центров коагуляции на крупных частицах антрацитовой крошки в верхнем слое задерживается значительное количество крупнодисперсной взвеси. Фильтрация производится со скоростью 10 м вод. ст./ч.

Наиболее удобная и эффективная модель скорых фильтров – контактный осветлитель (КО). Нижний слой загрузки в нем состоит из гравия, а верхний – из кварцевого песка. Процесс КО идет быстрее и полнее в результате образования на гравии крупных хлопьев и задержки на них взвеси. Грязеемкость таких фильтров значительно повышена. Скорость фильтрации достигает 5-6 м³/ч, а полный цикл обработки воды составляет около 8 ч.

Следует отметить, что, хотя адсорбция микроорганизмов при осветлении и фильтрации воды весьма велика, полной гарантии эпидемической безопасности такая схема очистки не обеспечивает. В связи с этим после очистки на фильтрах вода проходит обеззараживание.

3.3 Обеззараживание

Для обеззараживания воды на водопроводах используются различные физические и химические методы.

Физические (нереагентные) методы обеззараживания воды: кипячение, обработка ультрафиолетовым (УФ) облучением, воздействие ультразвуковыми волнами, токами высокой частоты, гамма-лучами - применяются в зависимости от конкретных целей и условий обработки воды. Нереагентные методы обеззараживания имеют преимущества перед реагентными: они не изменяют химического состава воды, не приводят к образованию токсичных веществ, не ухудшают органолептических свойств воды, имеют широкий диапазон бактерицидного действия, т.к. действуют непосредственно на структуру микроорганизмов.

Наибольшее применение на водопроводных станциях имеет метод обеззараживания воды ультрафиолетовыми лучами с длиной волны 200-275 нм; максимум бактерицидного действия УФ-лучами находится в диапазоне волн 260 нм. УФ-облучение воды вызывает быструю гибель вегетативных форм, вирусов, спор микроорганизмов, в том числе устойчивых к хлору.

При местном водоснабжении наиболее надёжным методом обеззараживания воды является кипячение . В результате кипячения в течение 3-5 мин погибают все имеющиеся в воде микроорганизмы, а после 30 мин вода становится стерильной (погибают споры бацилл).

К химическим (реагентным) методам относятся хлорирование, озонирование и обработка воды ионами серебра.

3.3.1 Хлорирование

Хлорирование воды - наиболее распространённый способ обеззараживания питьевой воды с применением газообразного хлора или хлорсодержащих соединений, вступающих в реакцию с водой или растворенными в ней солями. В результате взаимодействия хлора с протеинами и аминосоединениями, содержащимися в оболочке бактерий и их внутриклеточном веществе, происходят окислительные процессы, химические изменения внутриклеточного вещества, распад структуры клеток и гибель бактерий и микроорганизмов. Дезинфекция (обеззараживание) питьевой воды осуществляется за счёт дозирования хлора, двуокиси хлора, хлорамина и хлорной извести. Необходимая доза дозируемого вещества устанавливается пробным хлорированием воды: она определяется хлорпоглощаемостью воды (количество хлора, необходимое для связывания содержащихся в воде органических соединений). С целью уничтожения микробов хлор вводят с избытком из того расчёта, чтобы через 30 мин после хлорирования воды содержание остаточного хлора было не менее 0,3 мг/л. В некоторых случаях проводится двойное хлорирование воды – до фильтрации и после чистки воды. Также при эпидемиологических катастрофах проводится суперхлорирование с последующим дехлорированием воды.

Нередко встречаются случаи загрязнения водоемов промышленными и городскими ливневыми стоками, содержащими соединения фенола. Образовавшиеся при хлорировании такой воды даже малыми дозами хлора хлорфенолы придают питьевой воде неприятный «аптечный» запах, что крайне отрицательно воспринимается населением. Это явление предупреждается предварительным внесением в воду аммиака. Преаммонизация заключается во внесении аммиака или его солей в воду за несколько секунд до подачи хлора. Хлор связывается с аммиаком и образуется хлорамины, оказывающие мощное и длительное обеззараживающее действие.

3.3.2 Озонирование

Озонирование является одним из лучших методов обеззараживания воды. Озон - газ голубоватого цвета с характерным запахом, хорошо растворим в воде. Сырьем для производства озона является атмосферный воздух или чистый кислород при действии на него электрического разряда высокого напряжения. Озон самопроизвольно разлагается по схеме О2→О2+О. Озон и свободные радикалы имеют исключительно высокий окислительно-восстановительный потенциал и поэтому быстро вступают в реакцию с содержащимися в воде органическими веществами, и эта реакция протекает быстрее и интенсивнее, чем у хлора. Озон обладает значительным бактерицидным действием, как и хлор, но в отношении спор, озон более активен. Время, необходимое озону для получения 99% обеззараживания в отношении кишечной палочки в 7 раз меньше чем при хлорировании, а скорость уничтожении спор у озона в 30 раз больше. При озонировании уничтожаются и органолептические свойство воды - уменьшается цветность устраняются посторонние запахи и привкусы.

Доза озона, необходимая для обеззараживания воды от 0-5 до 6 мг/л. Продолжительность обеззараживания 3-5 минут. Содержание остаточного озона в воде не более 0,3мг/л.

Достоинствами данного метода являются – надежность и быстрота обеззараживания, разрушение органических примесей, улучшение органолептических свойств воды;

Недостатками - большие затраты, обеззараживанию воды могут служить у нас соли железа и меди и отсутствие долгого бактерицидного действия соединений хлора.

3.3.3 Обеззараживание серебром

Одно из свойств тяжелых металлов – это способность их оказывать бактерицидное действие в чрезвычайно малых концентрациях. Такое свойство наиболее выражено у серебра, меди, золота.

Бактерицидное действие ионов серебра объясняется тем, что они взаимодействуют с протоплазмой микроорганизмов, угнетают ферменты. Обогащение воды ионами серебра может осуществляться 3-мя способами:

1) Добавлением к воде растворов солей серебра (AgNO3);

2) Путем фильтрации воды через посеребренный песок;

3) Электролитическим методом.

Для обеззараживания прозрачных бесцветных вод требуется от 0.5 до 1 мг серебра на 1 л воды. Продолжительность дезинфекции около 2 часов. При длительном употреблении такой воды содержание серебра в ней не должно превышать 0,05 кг/л.

Метод нашел широкое применение в случаях, когда необходимо длительно хранить запасы воды, например, на судах дальнего плавания или в маловодных местностях, т.к. серебро долго сохраняется в воде и предохраняет ее от возможного заражения.

Недостатки метода:

1) Дороговизна;

2) Ненадежность обеззараживания воды, содержащей много взвесей органических веществ и хлоридов.

Хими́ческий соста́в воды́ – совокупность находящихся в воде веществ в различных химических и физических состояниях.

Общеизвестна химическая формула воды – Н 2 О. Однако до конца XVIII в. считалось, что вода является неделимым веществом. В 1781 г. английский ученый Генри Кавендиш доказал, что вода состоит из двух элементов, которые позже французский учёный Антуан Лавуазье назвал кислородом и водородом. Дальнейшие исследования показали, что вещество «вода» обладает уникальной структурой и не менее уникальными свойствами. Во-первых, она состоит из соединения двух газов, причем никакие другие газы, смешиваясь между собой, не образуют жидкость. Во-вторых, вода имеет максимальную плотность при 4°С, благодаря чему лёд плавает на её поверхности и предохраняет её от полного замерзания. В-третьих, вода меняет удельную теплоёмкость в интервале от точки плавления (0°С) до точки кипения (100°С). Наименьшая удельная теплоёмкость приходится на интервал в 30–40°С. Последнее обстоятельство во многом определило пути эволюции: этот интервал – температура тела теплокровных животных.

Большинство необычных свойств воды определяется строением её молекулы, физической природой составляющих её атомов и компоновкой самих молекул. Молекула воды напоминает равнобедренный треугольник, в основании которого расположены ядра атома водорода, а в вершине – ядро атома кислорода. Поэтому молекула воды характеризуется значительной полярностью: отрицательный и положительный заряды в ней разнесены. В результате молекулы воды способны ассоциировать, то есть образовывать группировки, называемыми кластерами.

Атомы водорода и кислорода имеют несколько природных изотопов. Например, у водорода их три: обычный водород (протий), тяжёлый водород (дейтерий) и сверхтяжёлый радиоактивный водород (тритий).

В природе наиболее распространена вода, состоящая из обычных изотопов кислорода и водорода (99,73%). Тяжёлая вода (оксид дейтерия) внешне выглядит, как обычная. Тяжёлая вода используется в ядерных реакторах для торможения нейтронов. Сверхтяжёлую воду применяют в термоядерных реакциях.

Из химических свойств воды следует отметить одно из самых важных – способность растворять твёрдые вещества и вымывать их, поэтому в водных объектах , поверхностных и подземных, обнаружены почти все известные науке химические элементы. Механизмом растворения многих кристаллических солей является гидролитическая диссоциация, когда молекула соли распадается на ионы с положительным и отрицательным зарядом – соответственно на катионы и анионы. Поскольку вода – диполь, ионы окружают молекулы воды, формируя так называемую гидратную оболочку. Силы взаимодействия ионов с молекулами воды достаточно велики. Вот почему в состав многих минералов входит вода.

Процесс, обратный растворению – осаждение (седиментация), т.е. выпадение веществ из водного раствора. Благодаря этому процессу образовались месторождения солей хлоридов натрия, калия, магния и многих других. Возникают трудности в использовании для хозяйственных целей воды с высоким содержанием растворённых солей. Так, высокое содержание солей магния и кальция, так называемых солей жёсткости, приводит к образованию накипи, ухудшает качество питьевой воды и не позволяет использовать такую воду в ряде производств.

В процессе природного круговорота вода, соприкасаясь со всевозможными веществами, становится раствором различного, зачастую очень сложного состава. Наименьшая концентрация растворённых веществ (десятки миллиграмм в литре) отмечается в атмосферных осадках, ледниках и снежниках , поскольку при испарении вода теряет бόльшую часть растворённых в ней веществ. Однако при выпадении в виде дождя или снега вода поглощает аэрозоли и пыль, которые содержатся в атмосфере. Поэтому в местах, где сильно загрязнена атмосфера, осадки становятся источниками загрязнения водных объектов . Количественный показатель содержания растворённых в воде веществ называется общей минерализацией и выражается величиной мг/л или г/л. Содержание растворённых веществ в воде морей и океанов выражают также в относительных единицах, как правило, в промилле (‰), то есть г/кг, и называют солёностью (иногда – минерализацией). Если в одном литре природной воды содержится до 1 г (1000 мг) растворённых веществ, её считают пресной, от 1 до 25 г – солоноватой, от 25 до 50 г – солёной (или морской солёности) и выше 50 г – высокосолёной (или рассолом). Если выделить из океанской воды все соли, они покрыли бы поверхность земного шара слоем стометровой толщины.

Важнейшее свойство природной воды заключается в том, что она является «буфером» в отношении кислотности. Свойство буферности кислотности – это способность воды сохранять более или менее неизменным содержание ионов водорода (Н +), т.е. сохранять значение рН при попадании в неё определенного количества кислоты или основания, которые нейтрализуются растворёнными в ней углекислым газом и гидрокарбонат-ионами. С концентрацией гидрокарбонат-ионов напрямую связана устойчивость состава природной воды к кислотным дождям.

В водных растворах подавляющее большинство солей существуют в виде ионов. В природных водах преобладают три аниона (гидрокарбонат HCO 3 – , хлорид Cl – и сульфат SO 4 2-) и четыре катиона (кальций Ca 2+ , магний Mg 2+ , натрий Na + и калий K +) – их называют главными ионами. Хлорид-ионы придают воде солёный вкус, сульфат-ионы, ионы кальция и магния – горький; гидрокарбонат-ионы безвкусны. Они составляют в пресных водах свыше 90% всех растворённых веществ. В ряде случаев к главным компонентам можно отнести также калий, бром, стронций и др.

Под влиянием климатических и других условий химический состав природных вод изменяется и приобретает черты, характерные для различных видов природных вод (атмосферные осадки, реки , озёра , подземные воды).

Вещества, содержащиеся в природных и техногенных водах, можно условно разделить на классы. По составу: органические и минеральные; по форме нахождения: растворённые и взвешенные; по происхождению: природные и антропогенные; по действию на живые организмы: токсичные и нетоксичные; по концентрации: макроэлементы – мезоэлементы – микроэлементы. В воде могут быть растворены газы (кислород , углекислый газ, азот, сероводород, метан и пр.).

Химический состав природной воды определяет путь, совершённый водой в процессе своего круговорота и течения по поверхности Земли. Количество растворённых и взвешенных веществ в воде зависит, во-первых, от состава пород, с которыми она соприкасалась, во-вторых, от природно-климатических условий бассейна, в третьих, от уровня антропогенной нагрузки на бассейн водного объекта, в-четвёртых, от населяющих водные объекты живых организмов.

Воды большинства чистых рек принадлежат к гидрокарбонатному классу, с преобладанием ионов кальция. Реки сульфатного и хлоридного классов сравнительно малочисленны. Они распространены преимущественно в степной полосе и полупустынях. Преобладающими катионами природных вод хлоридного класса являются, главным образом, ионы натрия. Воды хлоридного класса отличаются высокой минерализацией.

В случае, если промышленные и бытовые стоки (очищенные или частично очищенные) составляют значительную часть стока реки, они заметно влияют на катионно-анионный состав. Например, вода р. Москвы от гидрокарбонатно-кальциевого на входе в город меняет свой состав при выходе из города на воду с составом катионов: Na→K→Ca→Mg→NH 4 + и составом анионов: HCO→Cl – →SO→NO→PO.

Минерализация и химический состав воды озёр в отличие от рек меняются в очень широких пределах. Различие в минерализации отражается и на ионном составе воды озёр. С увеличением минерализации озёрной воды происходит относительный рост ионов в её составе в такой последовательности: для анионов HCO→SO→Cl – ; для катионов Ca 2+ →Mg 2+ →Na + .

Состав морской воды характеризуется большим содержанием солей. Если в водах материкового стока чаще всего наблюдается соотношение концентраций: HCO 3 - →SO 4 2- →Cl - и Ca 2+ →Mg 2+ →Na + или Ca 2+ →Na + →Mg 2+ , то для морских вод, начиная с общей минерализации 1 г/кг, соотношения меняются: Cl – →SO→HCO и Na + →Mg 2+ →Ca 2+ . Концентрации микроэлементов обычно очень малы, в сумме они не превышают 0,01% массы всех растворённых солей. Чем более изолировано море от океана, тем заметнее отличается состав его воды от состава воды в океане. Первостепенное значение имеют условия водообмена с океаном, соотношение объёма материкового стока с объёмом моря, глубина моря и характер химического состава вод впадающих рек.

Подземные воды отличаются исключительным разнообразием химического состава, в том числе и ионного. Ионный состав подземных вод прежде всего зависит от условий их формирования и залегания.

В настоящее время состав поверхностных вод в густо населённых районах мира в значительной мере формируется за счёт различных поверхностных (диффузных) источников загрязнения . Это сток с сельскохозяйственных и городских территорий, с производственных площадок, дорог, с осадками, а также при определенных условиях – вторичное загрязнение из донных отложений. К диффузным источникам добавляются точечные, преимущественно в городах. Сточные воды, поступающие в черте города, сильно различаются по составу. Для бытовых стоков основными показателями загрязнения являются биогенные элементы, т. е. вещества, способствующие росту микроводорослей, органические вещества, синтетические поверхностно-активные вещества (СПАВ), бактерии. В последние годы возрастает объём ксенобиотиков в сточных водах. Это лекарства, средства гигиены, моющие средства. Номенклатура этих «новых» загрязняющих веществ насчитывает многие тысячи наименований. Влияние на живые организмы и здоровье людей большинства из них остается неизученным, для таких веществ нормативы содержания в природной воде заведомо отсутствуют.

Современные водные объекты по составу содержащихся в них веществ сильно отличаются от их природного ненарушенного человеком состояния. Это отличие будет нарастать, если не принимать меры по снижению уровня загрязнений от хозяйственной деятельности.

Калий 2-20
Фтор 0,6–1,2
Кальций 25–80
Йод 0,06
Магний 5–50
HCO 3 30–400
Общая минерализация 200–500 мг./л
Общая жесткость 1,5–7 мг-экв./л

Минерализация

Минерализация воды это суммарный количественный показатель содержания растворенных в ней веществ, среди которых наиболее распространены неорганические соли (минералы), в состав которых могут входить анионы и карбонаты, хлориды, сульфаты и др. катионы кальций, магний, натрий, калий, железо и др. Единица измерения минерализации миллиграммы на 1 дмі (мг/дм3 или мг/л). Практически этот показатель указывается на всех питьевых бутылированных водах.

Уровень минерализации природных вод может колебаться в широких границах. Но, с точки зрения ежедневного потребления воды человеком, оптимальным можно считать уровень 200–600 мг/л.

Калий (K)

Калий в организме необходим для нормального функционирования нервных клеток мозга и всего организма, деятельности мышц сердца, а также для вывода излишков воды и натрия.
Рекомендуемая суточная доля калия составляет для детей от 600 до 1700 миллиграммов, для взрослых от 1800 до 5000 миллиграммов. Потребность в калии зависит от общего веса тела, физической активности, физиологического состояния, и климата места проживания.

Фтор (F)

Фтор в организме на ряду с кальцием и фосфором принимает участие в построении костей и зубов, обеспечивает их твердость и крепость, стимулирует кроветворную систему и иммунитет, принимает участие в развитии скелета. Стимулирует репаративные процессы при переломах костей, а также предупреждает развитие сенильного остеопороза. Недостаток фтора в воде и пищевых продуктах способствует развитию кариеса зубов, а также снижает прочность костей.

Кальций (Са)

Особое значение для организма человека имеют ионы кальция, как основной структурный компонент в формировании опорных тканей. Недостаток в организме кальция ведет к остеопорозу, а недостаток его в водном обмене ведет к отекам.

Наличие в необходимых количествах ионов кальция питьевой воде стимулирует кроветворение, поддерживает высокий уровень обмена веществ, усиливает защитные реакции организма, способствует деятельности нервной системы, сокращению мышц, свертываемости крови и нормальной работе сердца.

Йод (I)

Основная биологическая функция йода состоит в поддержании функции щитовидной железы и построении ею гормона — тироксина. Йод пока является единственным известным микроэлементом, участвующим в образовании гормона. Недостаток йода в питьевой воде - это не только путь формирования патологии щитовидной железы, но и риск низкого уровня или неполного развития интеллектуальных возможностей человека. О необходимости йодирования питьевой воды говорится в постановлении Главного государственного санитарного врача РФ Г. Г. Онищенко «О коррекции качества питьевой воды по содержанию биогенных элементов».

Магний (Mg)

Работа всех других основных минералов в организме зависит от наличия магния. Например, магний активирует фермент, находящийся во всех оболочках клеток (мембранах). Этот фермент контролирует баланс натрия и калия, удерживая натрий вне клетки, а калий внутри клетки. Это необходимо для поддержания внутриклеточного водного баланса, активности нервных клеток и производства клеточной энергии. При дефиците магния в клетке калий быстро выводится из нее, вследствие чего создается внутри-клеточный дефицит калия, и этот дефицит, в свою очередь, приводит к быстрой утомляемости, упадку сил и слабости при жаре.


Молекулярная структура

Вода - (оксид водорода) Н 2 0 , молекулярная масса 18,016, простейшее устойчивое соединение водорода с кислородом. Жидкость без запаха, вкуса и цвета.

Вода - одно из самых распространенных на Земле соединений. Молекулы воды обнаружены в межзвездном пространстве. Вода входит в состав комет, большинства планет солнечной системы и их спутников. Количество воды на поверхности Земли оценивается в 1,39 Ю 18 т, большая часть ее содержится в морях и океанах. Количество доступных для использования пресных вод в реках, озерах, болотах и водохранилищах составляет около 11 10 т. Масса ледников Антарктики, Антарктиды и высокогорных районов 2,4 10 16 т, при­мерно столько же имеется подземных вод, причем, только небольшая их часть - пресные. В глубинных слоях Земли содержится значительно больше (по- видимому, не менее, чем на порядок) воды, чем на поверхности. В атмосфере находится около 1,3 10 т воды. Вода входит в состав многих минералов и горных пород (глины, гипс и др.), присутствует в почве, является обязательным компонентом всех живых организмов.

Изотопный состав. Существует 9 устойчивых разновидностей воды. Со­держание их в пресной воде в среднем следующее (%): 1 Н 2 16 О - 99,73; 1 Н 2 18 0 - 2; 1 Н 2 17 О - 0,04; 1 Н 2 Н 16 О - 0,03; остальные пять изотопных разновидностей присутствуют в воде в ничтожных количествах. Кроме стабильных изотопных разновидностей, в воде содержится небольшое количество радиоактивного 3 Н 2 (или Т 2 О). Изотопный состав природных вод разного происхождения варьируется. Особенно непостоянно отношение Н/ Н в пресных водах - в среднем 6900, в морской воде - 5500, во льдах - 5500-9000.

Строение молекулы и физические свойства. Атом водорода и кислоро­да в молекуле воды расположены в углах равнобедренного треугольника с дли­ной связи 0,0957 нм; валентный угол Н-О-Н 104,5°(рис.1; дипольный момент 6,17 10 -30 Кл м; поляризуемость молекулы 1,45 10 " нм; средний квадрупольный момент - 1,87 10 Кл-м, энергия ионизации 12,6 эВ, сродство к протону 7,1 эВ. При взаимодействии молекулы воды с другими атомами, моле

Химический состав воды. В водных растворах подавляющее большин­ство солей существует в виде ионов. В природных водах преобладают три аниона (гидрокарбонат HCO 3 ", хлорид C 1" и сульфат SO 4) и четыре катиона (кальций Ca 2+ , магний Mg 2+ , натрий Na + и калий K +) - их называют главны­ми ионами. Хлорид-ионы придают воде соленый вкус, сульфат-ионы, ионы кальция и магния - горький, гидрокарбонат-ионы безвкусны. Они составляют в пресных водах свыше 90-95%, а в высокоминерализованных - свыше99 % всех растворенных веществ. Обычно нижним пределом концентрации для главных ионов считают 1 мг/л, поэтому в ряде случаев, например для морских и некото­рых подземных вод, к главным компонентам можно отнести также Br - , B 3+ , Sr 3+ и др. Отнесение ионов K + к числу главных является спорным. В подземных и поверхностных водах эти ионы, как правило, занимают второстепенное поло­жение. Только в атмосферных осадках ионы K + могут играть главную роль.

Однако ионная форма главных компонентов свойственна в полной мере лишь маломинерализованным водам. При увеличении концентрации между ио­нами усиливается взаимодействие, направленное на ассоциацию, т. е. процесс, обратный диссоциации. При этом образуются ассоциированные ионные пары, например MgHCO 3 +, CaHCO 3 +.

Под влиянием климатических и других условий химический состав при­родных вод изменяется и приобретает характерные черты, иногда специфиче­ские для различных видов природных вод (атмосферные осадки, реки, озера, подземные воды).


Классификация природных вод по химическому составу

Соотношение указанных элементов определяет основные свойства вод - щелочность, соленость и жесткость (рис. 2).

По анионам выделяют три типа воды: 1) гидрокарбонатные; 2) сульфат­ные; 3) хлоридные и ряд промежуточных - гидрокарбонатно-сульфатные, сульфатно-хлоридные, хлоридно-сульфатные, а также более сложного состава.


Под классификацией природных вод по химическому составу понимают распределение химического состава природных вод на классы по определен­ным признакам, которое составляет систему. Основой для систематизации в существующих классификациях служат следующие признаки: минерализация воды, концентрация преобладающего компонента или их групп, соотношение между концентрациями разных ионов, наличие повышенных концентраций ка­ких-либо специфических компонентов газового (СО 2 , H 2 S , СН 4 и др.) или мине­рального (F , Яа и др.) состава.

В настоящее время универсальной классификации не существует. К наи­более известным и часто употребляемым относятся классификации природных вод Ч. Пальмера, С. А. Щукарева, О. А. Алекина. Химический состав воды изо­бражают в виде индекса, формулы, графика или диаграммы.

По преобладающему аниону воды делятся на три класса: гидрокарбонат­ные, сульфатные и хлоридные. Воды каждого класса делятся, в свою очередь, по преобладающему катиону на три группы: кальциевую, магниевую и натрие­вую. Каждая группа подразделяется на 4 типа по соотношению содержащихся в воде ионов (в эквивалентах). При этом класс природных вод обозначается сим­волом соответствующего аниона: С - НСО 3 - , S - SO 4 - , С1 - С1 - ; группа: сим­волом катиона: К+, Na +, Са 2 +, Мg 2 +; тип - римской цифрой.

Формула воды записывается следующим образом. К символу класса до­бавляется нижний индекс - значение минерализации (с точностью до 0,1 г/л), к символу группы - верхний индекс - значение общего катионного состава (с точностью до целых единиц вещества в ммоль/л), например: С 12 № 0,5 - гидро- карбонатно-натриевая вода с общей минерализацией 1,2 г/л и преобладающей концентрацией гидрокарбонатных ионов и ионов натрия. Или Сса11 5 0,4 - это значит, что вода гидрокарбонатного класса, группы кальция, типа II, с минерализацией 0,4 г/дм и жесткостью 5 ммоль/дм (мг-экв/л).

В природных водах присутствуют также растворенные газы. В основном это газы, которые диффундируют в воды из атмосферы воздуха, такие как ки­слород, углекислый газ, азот. Но в то же время в подземных водах или водах нецентрализованных источников водоснабжения, в минеральных и термальных водах могут присутствовать сероводород, радиоактивный газ радон, а также инертные и другие газы.

В табл. 1. представлены ионы, наиболее часто встречающиеся в природ­ных водах.

Таблица 1

Ионы, наиболее часто встречающиеся в природных водах

Катион

Анион

Наименование

Обозначение

Наименование

Обозначение

Водород

Гидроксильный

OH -

Натрий

Na+

Бикарбонатный

HCO 3 "

Аммоний

NH 4 +

Хлоридный

Cl -

Кальций

Ca 2 +

Сульфатный

S04 2 "

Магний

Mg 2 +

Нитритный

N 02 -

Железо (двух- и трехвалентное)

Fe 2 +, Fe 3 +

Нитратный

N 03 -

Барий

Ba 2 +

Силикатный

S103 2 "

Алюминий

Al 3 +

Ортофосфорный

PO 4 3 "

Калий

Фторидный

F -

Химические свойства воды

Химически чистая вода в обычных условиях - жидкость без цвета, вкуса и запаха. При нормальном атмосферном давлении (1013 гПа или 760 мм.рт.ст.) температура замерзания принята равной 0 о С, а кипения 100 о С.

Вода является слабым электролитом. При температуре 25оС примерно

1 на 5 10 9 молекул подвергается электролитической диссоциации по схеме Н 2 О^Н++ОН - .

Вода хорошо растворяет многие полярные и диссоциирующие на ионы вещества. Концентрация ионов Н+ и связанная с ней концентрация ионов ОН - - являются важными характеристиками водных растворов и отражают водород­ный показатель (рН), который представляет десятичный логарифм концентра­ции водных ионов (моль/л), взятый с обратным знаком. Величина рН обуслов­ливает кислотную или щелочную реакцию водной среды.

Минерализация воды. Общая минерализация представляет собой сум­марный количественный показатель содержания растворенных в воде ве­ществ. Этот параметр также называют содержанием растворимых твердых ве­ществ или общим солесодержанием, так как растворенные в воде вещества на­ходятся именно в виде солей. Минерализация выражается в мг/л или г/л. В по­давляющем большинстве случаев солевой состав природных вод определяется 2+ 2+ + + 2 катионами Са, Mg , Ка, К и анионами НС0 3 - , Cl - , S 0 4 - . Эти ионы называ­ются главными ионами воды или макрокомпонентами ; они определяют хими­ческий тип воды. Остальные ионы присутствуют в значительно меньших коли­чествах и называются микрокомпонентами; они не определяют химический тип воды.

кальция, магния, калия и натрия) и небольшое количество органических ве­ществ, растворимых в воде.

В литературных источниках можно встретить несколько классификаций природных вод по степени минерализации. Наиболее распространена следующая:

Пресные - до 1г/л;

Слабосолоноватые - 1-3 г/л;

Солоноватые - 3-10 г/л;

Соленые - 10-50 г/;

Рассолы - более 50 г/л.

Очень часто общую минерализацию воды путают с сухим остатком. Сухой остаток определяется путем выпаривания литра воды и взвешивания того, что осталось. В результате не учитываются более летучие органические соедине­ния, растворенные в воде. Это приводит к тому, что общая минерализация и су­хой остаток могут отличаться на небольшую величину - как, правило, не более 10%.

В зависимости от минерализации природные воды можно разделить на следующие категории (табл. 2). Соленость воды - содержание в воде хлоридов и сульфатов Na , Mg , Ca .

Таблица 2

Классификация вод по солености (по А. М. Овчинникову) ___________

Тип солености

Класс солености

Минерализация,

г/л

Химический тип

Пресные

Ультрапресные

< 0.2

Обычно­

гидрокарбонатные

Пресные

0 . 2 - 0 .5

Воды с относи­тельно повышенной минерализацией

0.5-1

Гидрокарбонатно­

сульфатные

Солоноватые

Солоноватые

1-3

Сульфатно-

хлоридные

Соленые

Соленые

3-10

Преимущественно

хлоридные

Воды повышенной солености

10-35

Рассолы

Воды, переходные к рассолам

35-50

Хлоридные

Рассолы

50-400

Природные воды представляют собой собственно воду - химическое со­единение кислорода и водорода - и растворенные в ней вещества, обусловли­вающие ее химический состав и свойства. В воде растворяются твердые, жид­кие и газообразные вещества, которые делятся на три группы:

хорошо растворимые (в 100 г воды растворяется более 10 г вещества); плохо растворимые, или малорастворимые (в 100 г воды - менее 1 г вещества);

практически не растворимые (в 100 г воды растворяется менее 0,01 г вещества).

Минерализацией называют сумму содержащихся в воде минеральных веществ. Минерализацию пресных вод принято выражать в миллиграммах на литр (мг/л) или граммах на литр (г/л), соленых вод рассолов - в граммах на литр или процентах (%). В зависимости от практического применения сущест­вует несколько видов классификации природных вод по степени минерализации.

Агрегатное состояние воды и фазовые переходы

Вода на Земле в зависимости от двух физических характеристик - темпе­ратуры и давления может находиться в трех агрегатных состояниях или фазах - твердом (лед), жидком (собственно вода) и газообразном (водяной пар). Изме­нение агрегатного состояния воды называют фазовыми переходами (рис. з).

Рис. 3. Диаграмма стояния воды или фазовая диаграмма

В ней по оси абсцисс откладывается температура, а по оси ординат - дав­ление. Диаграмма представляет собой три кривые:

Кривая АВ - кривая испарения - выражает зависимость давления пара жидкой воды от температуры (или, наоборот, представляет зависимость тем­пературы кипения воды от давления). Другими словами, эта линия отвечает двухфазному равновесию (жидкая вода) D (пар), и число степеней свободы, рассчитанное по правилу фаз, составляет С = 3 - 2 = 1. Такое равновесие назы­вают моновариантным. Это означает, что для полного описания системы дос­таточно определить только одну переменную - либо температуру, либо давле­ние, т. к. для данной температуры существует только одно равновесное давле­ние и для данного давления - только одна равновесная температура.

При давлениях и температурах, соответствующих точкам ниже линии АВ, жидкость будет полностью испаряться, и эта область является областью пара. Для описания системы в данной однофазной области необходимы две незави­симые переменные (С = 3 - 1 = 2): температура и давление.

При давлениях и температурах, соответствующих точкам выше линии АВ, пар полностью сконденсирован в жидкость (С = 2). Верхний предел кривой испарения AB находится в точке В, которая называется критической точкой (для воды 374 o С и 218 атм). Выше этой температуры фазы жидкости и пара становятся неразличимыми (исчезает четкая межфазная граница жидкость/пар), поэтому Ф=1.

Линия АС - эта кривая возгонки льда (иногда ее называют линией суб­лимации), отражающая зависимость давления водяного пара надо льдом от температуры. Эта линия соответствует моновариантному равновесию (лед) D (пар) (С=1). Выше линии АС лежит область льда, ниже - область пара.

Линия АБ - кривая плавления, выражает зависимость температуры плавления льда от давления и соответствует моновариантному равновесию (лед) D (жидкая вода). Для больши нства, веществ линия АD отклоняется от вер­тикали вправо, но поведение воды аномально: жидкая вода занимает меньший объем, чем лед. На основании принципа Ле Шателье можно предсказать, что повышение давления будет вызывать сдвиг равновесия в сторону образования жидкости, т. е. точка замерзания будет понижаться.

Исследования, проведенные Бриджменом для определения хода кривой плавления льда при высоких давлениях, показали, что существует семь различ­ных кристаллических модификаций льда, каждая из которых, за исключением первой, плотнее воды. Таким образом, верхний предел линии AD - точка D , где в равновесии находятся лед I (обычный лед), лед III и жидкая вода. Эта точка находится при -22 0 С и 2450 атм.

Тройная точка воды (точка, отражающая равновесие трех фаз - жидко­сти, льда и пара) в отсутствие воздуха находится при 0,0100° С и 4,58 мм рт.ст. Число степеней свободы С=3-3=0 и такое равновесие называют нонвариантным.

В присутствии воздуха три фазы находятся в равновесии при 1 атм и при

0 o С. Понижение тройной точки на воздухе вызвано следующим причинами:

1. растворимостью воздуха в жидкой воде при 1 атм, что приводит к сни­жению тройной точки на 0,0024 o С;

2. увеличением давления от 4,58 мм рт.ст. до 1 атм, которое снижает тройную точку еще на 0,0075 o С.

Удельная теплота фазовых переходов воды очень велика. В тройной точ­ке вода одновременно находится во всех трех агрегатных состояниях.

Диаграмма состояния воды иллюстрирует две ее аномалии, оказывающие решающее влияние не только на поведение воды на Земле, но и природные ус­ловия планеты в целом. По сравнению с веществами, представляющими собой соединения водорода с элементами, находящимися в периодической таблице Менделеева, температура замерзания и кипения воды необычайно высока. Аномально высокие значения температуры замерзания и кипения предопреде­ляют возможность существования воды на планете как в твердом, так и жидком состоянии и служат определяющими условиями основных гидрологических и других природных процессов на Земле.

Плотность воды. Плотность - одна из важнейших физических характе­ристик любого вещества. Она представляет собой массу однородного вещества, приходящуюся на единицу объема и измеряется в кг/м. Плотность воды явля­ется функцией температуры, солености, давления, коллоидных взвесей.

Вода - единственное вещество, у которого в твердом состоянии плот­ность меньше, чем в жидком. При нормальном давлении плотность жидкой во­ды в диапазоне от 0 до 4°С ведет себя аномально, увеличиваясь с возрастанием температуры от 999,87 до 1000 кг/м. Поэтому при охлаждении от 4 до 0°С, т. е. непосредственно перед замерзанием, охлаждающаяся вода не опускается вниз, что сохраняет на глубинах в пресноводных водоемах положительную темпера­туру и предохраняет воду от замерзания, а водные организмы от гибели.

При последующем увеличении температуры выше 4 °С плотность воды, как и у всех веществ, уменьшается. Плотность льда заметно меньше жидкой воды, что также аномально. При температуре меньшей 0°С с уменьшением температуры плотность падает и составляет 920 кг/м при температуре - 20°С. Это приводит к тому, что лед, как вещество более легкое, чем вода всплывает и экранизирует водную толщу, защищая ее от охлаждения. Влияние солености на плотность также очень велико. Плотность морской воды может достигать 1025­1033 кг/м. Морская вода при солености 35%о и нормальном давлении имеет при 0 и 20°С плотность 1028,17 и 1024,78 кг/м соответственно. Температура замерзания воды при увеличении солености на каждые 10% уменьшается при­близительно на 0,54°С, поэтому вода замерзает при отрицательной температу­ре, составляющей, например, -1,9°С при солености 35%.

Физические аномалии воды. Характерные значения температуры воды. Температура наибольшей плотности дистиллированной воды при нор­мальном давлении 1,01 Ю 5 Па обычно принимается равной 4°С, хотя точное ее значение 3,98°С.

Нужно также иметь в виду, что дистиллированной воды в природе нет, а вода так называемых пресных озер и рек всегда немного минерализована. На­пример, концентрация солей воды оз. Байкал составляет 0,0697кг/м. Поэтому для природных озер и искусственных водохранилищ температура наибольшей плотности воды всегда немного меньше 4°С.

Значение коэффициента а для дистиллированной воды, по лабораторным данным, равно 0,0079 °С/Па.

Температура кристаллизации (замерзания) дистиллированной воды при нормальном атмосферном давлении принимается равной 0°С и служит началь­ным значением температурной шкалы термометра Цельсия.

Процесс замерзания пресной и соленой воды происходит скачком с выде­лением теплоты кристаллизации. Обратный процесс, т. е. таяние льда, происхо­дит с поглощением того же количества теплоты, но без скачка, постепенно.

Переохлаждение воды в природе, т. е. понижение ее температуры замер­зания по отношению к 0°С, наблюдается очень часто. В речных условиях пере­охлаждение поверхностного слоя воды составляет даже порядка - 1°С.

Переохлажденная на поверхности реки вода переносится в глубину тур­булентным течением и в благоприятных условиях образует внутриводный (шу­га) и донный лед. При этом степень переохлаждения глубинных вод значитель­но меньше, чем поверхностных. Переохлаждение наблюдается также в озерах и морях, где оно впервые и было обнаружено еще в XVIII в. в виде так называе­мого якорного льда на опущенных на дно якорях.

В лабораторных условиях в капиллярных трубках дистиллированную во­ду удалось переохладить до температуры - 33°С.

К важным особенностям изменения агрегатного состояния воды относят­ся большая затрата тепла на плавление, испарение, сублимацию и большое вы­деление тепла при обратных переходах, аномально низкая температура замер­зания и высокая температура кипения. Для воды характерны следующие физи­ческие аномалии и свойства:

Высокая по сравнению с другими веществами температура плавления, поэтому вода на Земле может находиться в твердом состоянии (ледники, снег) и жидком (реки, озера, подземные воды);

Плотность льда значительно меньше плотности воды, благодаря этому при замерзании водоема лед экранирует его от дальнейшего охлаждения (лед обладает небольшой теплоемкостью);

При увеличении температуры от 0 до 4°С плотность также увеличивает­ся, поэтому при охлаждении поверхностного слоя до 4°С опускание и переме­шивание слоев воды прекращается;

Удельная теплота ледообразования (количество теплоты затрачиваемое при превращении единицы массы льда при температуре плавления и нормаль­ном атмосферном давлении в воду) очень велика, поэтому процесс ледообразо­вания идет замедленно;

Удельная теплота парообразования (количество теплоты, необходимое для превращения единицы массы воды в пар) очень велика, поэтому процесс парообразования и идет замедленно.

Тепловые характеристики воды. Удельная теплоемкость (количество теплоты, необходимое для нагревания единицы массы воды на один градус) очень велика, поэтому вода медленно нагревается и медленно охлаждается, тем самым регулирует тепловые процессы на Земле.

Теплоемкость - это количество теплоты, поглощаемой телом при нагре­вании его на 1°С. Определяется она по формуле:

C = dQ/dt или C = Q/At,

где dQ - бесконечно малое количество теплоты, вызвавшее бесконечно малое повышение температуры dt ; At = t 2 - t 1 - изменение температуры тела, происходящее в результате подвода к нему количества теплоты Q ; t 1 и t 2 - тем­пература тела до и после подвода к нему теплоты.

Характеристикой теплоемкости вещества принята удельная теплоемкость - отношение теплоемкости тела к его массе:

c = C/m или c = Q/(m At).

Удельная теплоемкость воды - это количество теплоты, необходимое для нагревания 1кг дистиллированной воды на 1°С в пределах 14,5 - 15,5 °С. Удельная теплоемкость воды слабо зависит от температуры, поэтому в практи­ческих расчетах ее значение может быть принято постоянным, равным 4,2 кДж/(кг°С).

Удельная теплоемкость воды уменьшается с повышением температуры. Этим свойством, а также довольно большим значением удельной теплоемкости, вода отличается от всех других веществ, кроме ртути.

С увеличением минерализации воды теплоемкость ее уменьшается. Для морской воды при малой солености теплоемкость уменьшается примерно на 0,006кДж/(кг°С) на 1%.

Переход воды из жидкого состояния в твердое (кристаллическое - лед) сопровождается выделением теплоты кристаллизации Q KV , а обратный ему про­цесс - таяние льда - поглощением теплоты плавления Q m .. Эта способность вещества определяется удельной теплотой кристаллизации (плавления):

Ькр. = Окр. /тили L ra . = Q i^i M

где m - масса затвердевающего (тающего) тела.

Удельная теплота кристаллизации воды L K p . - это количество теплоты, ко­торое выделяется при кристаллизации 1 кг воды при постоянной температуре. Для дистиллированной воды она равна 33,3 10 4 Дж/кг.

Переход воды из жидкого состояния в газообразное (пар) сопровождается поглощением теплоты испарения Q H . Источником ее обычно служит внутрен­няя энергия самой жидкости, поэтому при испарении она охлаждается. Обрат­ный испарению процесс - конденсация пара - сопровождается выделением те­плоты Q k , равной теплоте испарения. Эта способность вещества определяется удельной теплотой испарения (конденсации):

L H = Q H /m или L k = Q K /m .

Итак, удельная теплота испарения воды - это количество теплоты, необ­ходимое, чтобы перевести 1 кг воды в парообразное состояние при постоянной температуре. Удельная теплота испарения воды зависит от температуры, при которой испаряется вода. Эта зависимость определяется следующей эмпириче­ской формулой:

L H = (25 - 0,024tn ) 10 5 ,

где 25 10 5 Дж/кг - удельная теплота испарения при температуре поверх­ности воды, равной 0°С;

t n - температура поверхности испаряющейся воды.

Температуропроводность - физический параметр вещества и, в частно­сти, воды, способствующий передаче теплоты таким образом, что температура в каждой точке стремится к соответствующему в данный момент установивше­муся состоянию. Характеристикой температуропроводности является коэффи­циент температуропроводности a = X /(cp ), где X - коэффициент теплопровод­ности. Коэффициент температуропроводности воды слабо зависит от темпера­-3

туры: при температуре, равной 0 и 10°С, а соответственно равно 0,485-10" и

0, 504 10 -3 м 2 ч.

Отмеченные выше тепловые показатели воды аномальны по сравнению с аналогичными характеристиками других веществ. Это обстоятельство обязано ее структуре, обусловленной водородными связями между молекулами, харак­теризующимися большей прочностью, чем межмолекулярные взаимодействия. Например, большая теплоемкость воды может быть объяснена только распадом ассоциированных молекул при нагревании. Так как распад этих молекул сопро­вождается поглощением энергии, то при нагревании воды теплота расходуется не только на повышение температуры, но и на распад ассоциированных молекул.

Вязкость, поверхностное натяжение. Вязкость достаточно мала, поэто­му вода является очень текучим веществом, она способна переносить различ­ные объекты.

Поверхностное натяжение воды достаточно велико, поэтому образуется мениск - капиллярные силы, благодаря которым растения способны брать воду из почвы. Вторым следствием является то, что водяные капли обладают боль­шой ударной силой, и являются одной из причин возникновения эрозии.

Вязкость есть физическое свойство вещества (жидкости, газа, твердого тела) оказывать сопротивление перемещению одной его части относительно другой. Вязкость является одним из главных свойств воды. Различают объем­ную и тангенциальную вязкость. Под объемной вязкостью понимают способ­ность жидкости воспринимать растягивающие усилия. Этот вид вязкости воды проявляется, например, при распространении в ней звуковых и особенно ульт­развуковых волн. Тангенциальная вязкость характеризует способность жидко­сти оказывать сопротивление сдвигающим усилиям.

Исследования показывают, что сопротивление жидкости растягивающим и сдвигающим усилиям проявляется лишь при различных скоростях движения одного слоя жидкости по другому, т. е. при возникновении угловых скоростей сдвига частиц. Со стороны слоя, движущегося быстрее, на слой, движущийся медленнее, действует ускоряющая сила. Наоборот, со стороны слоя, движуще­гося медленнее, на слой, движущийся быстрее, действует тормозящая, задер­живающая сила. Эти силы, носящие название сил внутреннего трения, направ­лены по касательной к поверхности слоев.

Поверхностное натяжение воды возникает на поверхности соприкасания ее с воздухом, твердым телом или другой жидкостью. Оно обусловлено силами притяжения между молекулами. Внутри воды силы притяжения между молеку­лами взаимно компенсируются, а на молекулы, находящиеся вблизи поверхно­сти, действует нескомпенсированная результирующая сила, направленная внутрь от ее поверхности. Поверхностное натяжение стремится уменьшить по­верхность жидкости до минимума. Поэтому капли жидкости имеют сфериче­скую форму, а в невесомости - форму шариков (поверхность сферы является наименьшей из всех геометрических фигур равного со сферой объема).

Смачивание. При соприкосновении твердого тела с водой смачивание наблюдается в том случае, когда взаимодействие между их молекулами сильнее взаимодействия между молекулами самой воды. В этом случае вода будет стремиться увеличить поверхность соприкосновения и растечется по твердому телу. Когда же взаимодействие между молекулами твердого тела и молекулами соприкасающейся с ним воды более слабое, чем между молекулами самой во­ды, вода будет стремиться сократить поверхность соприкосновения с твердым телом. По отношению к твердым телам вода обладает свойством полного и час­тичного смачивания и полного несмачивания.

Явление смачивания имеет большое значение при изучении передвиже­ния влаги по капиллярам в почвогрунтах и в снеге. Поверхность смачивающей жидкости, находящейся в узких капиллярах, принимает вогнутую форму.

Электрические свойства воды. Удельное электрическое сопротивление воды р э существенно зависит от температуры. Минерализация воды резко по­нижает ее удельное электрическое сопротивление. Так, у ладожской воды оно составляет 2,610 4 (Ом^м) -1 , а у морской - порядка 4-6 (Ом м) -1 . По приведен­ным значениям удельного электрического сопротивления можем судить, что чистая вода является плохим проводником электричества. Электрическая про­водимость воды может служить показателем загрязнения, как части водоема так и его в целом.

Вода является хорошим растворителем. Характеристикой жидкости как

растворителя является дипольный момент. У воды он весьма высокий (6,13 10 ­ 29

Клм), что обусловливает ее свойства хорошего растворителя веществ, моле­кулы которых тоже полярны. Однако для сравнения способности одних веществ растворять в себе другие более удобным, чем дипольный момент, оказалось поня­тие диэлектрической проницаемости.

Диэлектрическая проницаемость е показывает, во сколько раз напряжен­ность поля с данным веществом ниже, чем в вакууме. Диэлектрическая прони­цаемость воды при 20°С е = 81.

Способность воды растворять соли возрастает с повышением температу­ры и понижается с ее уменьшением. Этим обстоятельством объясняется выпа­дение солей из воды сильно минерализованных озер осенью и в зимний период.

Классификация видов движения воды в водных объектах

Благодаря малой вязкости вода подвижна и перемещается в сторону ук­лона поверхности.

Водные потоки делятся исходя из типов движения воды на стационарные (если скорость течения не изменяется во времени, dv /dt = 0) и нестационарные (если скорость течения во времени величина переменная, dv /dt Ф 0). Стацио­нарные водные потоки делятся на равномерные (если скорость вдоль потока ос­тается неизменной, dv/dх = 0) и неравномерные (если скорость движения вдоль потока изменяется, dv/dх Ф 0).

Существуют два гидродинамических режима движения воды: ламинар­ный и турбулентный. В ламинарном режиме частицы воды движутся по парал­лельным траекториям, скорость их движения невелика. Примером ламинарного движения могут служить подземные воды, ледники. В турбулентном режиме движение частиц воды имеет хаотический характер, с относительно большой скоростью. Таким режимом отличаются движения вод в океанах, морях, реках, озерах.

Характер движения определяется скоростью движения, гидродинамиче­ский режим потока характеризуется числом Рейнольдса (Яе):

Яе = vh /v ,

где h - глубина водоема;

v - кинематический коэффициент вязкости, при температуре ~15°С, v = 1* 10" 6 м 2 /с;

v - средняя скорость.

Если Яе < 300, то поток является ламинарным, если Яе > 3000 - турбу­лентным, 300< Яе <3000 соответствует переходному гидродинамическому ре­жиму потока.



 


Читайте:



Нижнечелюстной абсцесс. Абсцесс на подбородке. Абсцессы и флегмоны глазницы

Нижнечелюстной абсцесс. Абсцесс на подбородке. Абсцессы и флегмоны глазницы

Границы области: верхняя подбородочно-губная складка, нижняя щ край тела нижней челюсти, боковые — вертикальные линии, проведенные вниз от углов...

Анализ компетенций Исследовательские компетенции и исследовательская компетентность

Анализ компетенций Исследовательские компетенции и исследовательская компетентность

Разделы: Общепедагогические технологии Важнейшая цель современного профессионального образования – дать будущему специалисту определенный...

Профессиональный таролог наталья луговская Честный способ узнать будущее

Профессиональный таролог наталья луговская Честный способ узнать будущее

Прямое положение карты Двойка Посохов: Двойка Посохов символизирует человека с идеями, амбициями, вынужденного искать компромисс с другими людьми,...

За что любят святого николая

За что любят святого николая

Святой Николай родился в Малой Азии, в провинции Ликия, в городе Патара. Его родители Феофан и Нонна были очень благочестивыми и добрыми людьми....

feed-image RSS