Главная - Бойлеры
Генератор водорода путем ослабления межатомных связей высокой температурой. Как выделить кислород и водород из воды электролизом Температура разделения воды на водород и кислород

Для этого нужен более сложный прибор - электролизер, который состоит из широкой загнутой трубки, наполненной раствором щелочи, в которую погружены два электрода из никеля.

Кислород будет выделяться в правом колене электролизера, куда подключен положительный полюс источника тока, а водород - в левом.

Это обычный тип электролизера, которым пользуются в лабораториях для получения небольших количеств чистого кислорода.

В больших количествах кислород получают в электролитических ваннах разнообразных типов.

Войдем в один из электрохимических заводов по производству кислорода и водорода. В огромных светлых залах-цехах строгими рядами стоят аппараты, к которым по медным шинам подводится постоянный ток. Это электролитические ванны. В них из воды можно получить кислород и водород.

Электролитическая ванна - сосуд, в котором параллельно друг другу расположены электроды. Сосуд наполняют раствором - электролитом. Число электродов в каждой ванне зависит от размера сосуда и от расстояния между электродами. По схеме включения электродов в электрическую цепь ванны делятся на однополярные (монополярные) и двухполярные (биполярные).

В монополярной ванне половина всех электродов подключается к положительному полюсу источника тока, а вторая половина - к отрицательному полюсу.

В такой ванне каждый электрод служит или анодом, или катодом, и на обеих сторонах его идет один и тот же процесс.

В биполярной ванне источник тока подключается только к крайним электродам, один из которых служит анодом, а другой - катодом. С анода ток поступает в электролит, через который он переносится ионами к близлежащему электроду и заряжает его отрицательно.

Проходя через электрод, ток снова входит в электролит, заряжая обратную сторону этого электрода положительно. Таким образом, проходя от одного электрода к другому, ток доходит до катода.

В биполярной ванне только анод и катод работают как монополярные электроды. Все же остальные электроды, расположенные между ними, являются с одной стороны катодами (-), а с другой стороны - анодами (+).

При прохождении электрического тока через ванну между электродами выделяются кислород и водород. Эти газы нужно отделить друг от друга и направить каждый по своему трубопроводу.

Существуют два способа отделения кислорода от водорода в электролитической ванне.

Первый из них заключается в том, что электроды отгораживаются друг от друга металлическими колоколами. Образующиеся на электродах газы поднимаются в виде пузырьков кверху и попадают каждый в свой колокол, откуда через верхний отвод направляются в трубопроводы.

Этим способом кислород легко отделить от водорода. Однако такое разделение приводит к излишним, непроизводительным затратам электроэнергии, так как электроды приходится ставить на большом расстоянии друг от друга.

Другой способ разделения кислорода и водорода при электролизе заключается в том, что между электродами ставится перегородка - диафрагма, которая является непроницаемой для пузырьков газа, но хорошо пропускает электрический ток. Диафрагма может быть сделана из плотно сотканной асбестовой ткани толщиной 1,5-2 миллиметра. Эту ткань натягивают между двумя стенками сосуда, создавая тем самым изолированные друг от друга катодные и анодные пространства.

Водород из всех катодных и кислород из всех анодных пространств поступают в сборные трубы. Оттуда по трубопроводам каждый газ направляется в отдельное помещение. В этих помещениях под давлением 150 атмосфер полученными газами наполняют стальные баллоны. Баллоны направляют во все уголки нашей страны. Кислород и водород находят широкое применение в различных областях народного хозяйства.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Разделение воды, с целью получения водорода, является "священным Граалем" многих ученых, ведущих работы в направлении разработки практически неисчерпаемого источника экологически чистой энергии. Теперь, благодаря исследования ученых университета Монаша (Monash University) в Австрии, этот процесс будет реализовать гораздо проще, чем считалось ранее. Согласно профессору Леоне Спиччиа (Leone Spiccia), ключом к водородной энергетике будущего может стать природный минерал бернессит (Birnessite), который в природе придает черную окраску некоторым горным породам.

"Камнем преткновения процесса получения водорода является собственно разложение воды на кислород и водород. Используя традиционные способы на разрушение химических связей требуется очень много энергии, что делает эти процессы экономически невыгодными. Наша команда разработала процесс расщепления молекулы воды, основанный на марганцесодержащем катализаторе и использующий для этого солнечный свет" - говорит профессор Спиччиа. - "Основой минерала бернессита является марганец, который, как и все элементы из середины периодической системы, может существовать в нескольких состояниях, которые химики называют степенями окисления. Это соответствует количеству атомов кислорода, с которыми связан атом вещества".

Изначально ученые пытались использовать весьма сложные катализаторы на основе того же марганца. После того, как им удалось получить достаточно эффективный каталитический процесс разложения воды на водород и кислород, используя электрический ток, они, используя совершенные спектроскопические методы анализа, обнаружили, что использованный ими сложный катализатор преобразовался в более простое соединение, аналогом которого является природный минерал бернессит. Работа этого катализатора полностью повторяет процессы, на которых основывается процесс расщепления воды под воздействием солнечных лучей в природе.

"Эти исследования позволили нам проникнуть глубже в тайны природы и выяснить как в действительности в природе работает естественный марганцевый катализатор" - рассказывает доктор Розали Хокинг (Dr Rosalie Hocking) из Австралийского центра изучения электроматериалов (Australian Centre for Electromaterials Science). - "Ученые приложили большие усилия к созданию сложных марганцесодержащих молекул для того что бы получить эффективный катализатор. Но все оказалось гораздо проще, самой большой эффективностью в области расщепления воды обладает естественный материал, который достаточно устойчив, что бы выдержать жесткие физические и химические нагрузки во время его использования".

Водород - самое экологически чистое топливо на Земле: при его сгорании образуется только вода. В качестве энергоносителя водород можно использовать для получения электричества и тепла в промышленности, в быту, на транспорте. В частности, с помощью водородных топливных элементов, в которых происходит прямое преобразование химической энергии в электричество, уже созданы опытные образцы электромобилей (см. "Наука и жизнь № ). Существует также много способов безопасного хранения и транспортировки водорода. А не нанесут ли вреда природе технологические процессы получения водорода?

В настоящее время водород в промышленных масштабах получают паровой конверсией метана (природного газа). При температуре 750-850 о С в присутствии водяного пара метан и вода расщепляются на водород и монооксид углерода, затем при 200-250°С происходит превращение монооксида углерода и воды в водород и диоксид углерода. Оба процесса эндотермические, и для их поддержания приходится сжигать около половины объема исходного газа, из-за чего экологический эффект оказывается очень низким.

Предлагается использовать для нагрева и подвода тепла высокотемпературные ядерные реакторы с гелиевым теплоносителем. Таким образом можно экономить углеводородное сырье и поставлять на рынки развивающихся стран водородное топливо вместо ядерных реакторов.

Дальнейшее развитие атомно-водородной энергетики пойдет по пути использования в качестве сырья не метана, а воды. Здесь могут быть использованы электролиз, а также термохимические и комбинированные методы получения водорода.

Известный способ термического разложения воды, которое происходит при температуре 2500°С, вряд ли применим, поскольку сложно предотвратить последующую рекомбинацию молекул воды. Однако возможен термохимический процесс разложения воды при температурах порядка 1000°С в присутствии соединений брома и йода. Правда, здесь требуется подведение тепла, и кпд составляет около 50%. На отдельных стадиях процесса наряду с термическим воздействием используется электролиз.

Электролитический водород получить проще всего, но экономически это невыгодно: на получение одного кубометра водорода требуется 4,8 киловатт-часа энергии. Если проводить электролиз перегретого пара, то эффективность процесса повышается, и на получение кубометра водорода уходит около 2,5 киловатт-часа.

В настоящее время "Курчатовский институт" и американская компания "GA" совместно разрабатывают очень перспективный проект газовой турбины-модульного гелиевого реактора. При генерации электричества с использованием прямого газотурбинного цикла можно достичь кпд, равного 50%.

тра. Данная методика обсуждалась выше в параграфе об очистке водорода монооксида углерода СО. Хотя на первый взгляд этот способ получения во рода может показаться привлекательным, однако его практическая реализа" достаточно сложна.

Представим себе такой эксперимент. В цилиндрическом сосуде под п шнем находится 1 кмоль чистого водяного пара. Вес поршня создает в cocj постоянное давление, равное 1 атм. Пар в сосуде нагревают до температ> 3000 К. Указанные значения давления и температуры были выбраны произвс. но в качестве примера.

Если в сосуде находятся только молекулы Н20, то количество свобол энергии системы можно определить с помошью соответствующих таблиц TeD динамических свойств воды и водяного пара Однако на самом деле по край мере часть молекул водяного пара подвергается разложению на составляг ее химические элементы, т. е. водород и кислород:

поэтому полученная смесь, содержащая молекулы Н20 , Н2 и 02, будет хар-«. теризоваться другим значением свободной энергии.

Если бы все молекулы водяного пара диссоциировали, то в сосуде оказалась газовая смесь, содержащая 1 кмоль водорода и 0,5 кмоля кислорода. Количе^ свободной энергии этой газовой смеси при тех же значениях давления (1 а и температуры (3000 К) оказывается больше количества свободной энер чистого водяного пара. Отметим, что 1 кмоль водяного пара был преобразован 1 кмоль водорода и 0,5 кмоля кислорода, т. е. общее количество вещества те: составляет А"оГ)||(=1,5 кмоля. Таким образом, парциальное давление водорода б> равно 1/1,5 атм, а парциальное давление кислорода - 0.5/1,5 атм.

При любом реалистичном значении температуры диссоциация водяного п будет неполной. Обозначим долю продиссоциировавших молекул перемен F. Тогда количество водяного пара (кмоль), который не подвергся разложен будет равно (1 - F) (считаем, что в сосуде находился 1 кмоль водяного пара). К личество образовавшегося водорода (кмоль) будет равно F, а кислорода - F Получившаяся смесь будет имеет состав

(l-F)n20 + FH2 + ^F02.

Общее количество газовой смеси (кмоль)

Рис. 8.8. Зависимость свободной энергии смеси водяного пара, водорода и кислорода от мольной доли продиссоциировавшего водяного пара

Свободная энергия компонента смеси зависит от давления в соответствии соотношением

8i = 8i +RTnp(, (41)

гле g - - свободная энергия /-го компонента смеси в расчете на 1 киломоль ftp и давлении 1 атм (см. «Зависимость свободной энергии от температуры в гл. 7).

Зависимость свободной энергии смеси от F, определяемая уравнением (42 показана на рис. 8.8. Как видно из рисунка, свободная энергия смеси водя - го пара, кислорода и водорода при температуре 3000 К и давлении 1 атм го: минимум, если доля продиссоциировавших молекул водяного пара состав

14,8 %. В этой точке скорость обратной реакции н, + - СУ, -> Н-,0 равна ско

1 2 сти прямой реакции Н20 -» Н2 + - 02 , т. е. устанавливается равновесие.

Чтобы определить точку равновесия, необходимо найти значение F при

тором СП11Х имеет минимум.

d Gmjy -$ -$ 1 -$

-^ = - Ян2о + Яи2 + 2^о2 +

Sh2o “ Sn2 ~ 2 go2

Константа равновесия Кр зависит от температуры и от стехиометрических коэффициентов в уравнении химической реакции. Значение Кр для реакции

Н-0 -» Н2 + ^02 отличается от значения для реакции 2Н20 -» 2Н2 + 02 . При зтом константа равновесия не зависит от давления. Действительно, если обра­титься к формуле (48), то можно увидеть, что значения свободной энергии g* определены при давлении 1 атм и не зависят от давления в системе. Более того, г»ли водяной пар содержит примесь инертного газа, например аргона, то это тткже не изменит значения константы равновесия, так как значение g"Ar равно тлю1*.

Соотношение между константой равновесия Кр и долей продиссоциировав - гго водяного пара /’может быть получено, если выразить парциальные давле­ния компонентов смеси в функции от F, как это было сделано в формулах (38), 39) и (40). Отметим, что эти формулы справедливы только для частного случая, гда полное давление равно 1 атм. В общем случае, когда газовая смесь нахо - іся при некотором произвольном давлении р, парциальные давления можно ссчитать по следующим соотношениям:

Как следует из приведенной выше информации, прямое термическое ра жение воды возможно только при очень высокой температуре. Как показано рис. 8.9, при температуре плавления палладия (1825 К) при атмосферном. лении только незначительная доля водяного пара подвергается диссоциа Это означает, что парциальное давление водорода, полученного термичсс- разложением воды, будет слишком низким для использования в практичес задачах.

Повышение давления водяного пара не исправит ситуацию, так как при резко уменьшается степень диссоциации (рис. 8.10).

Определение константы равновесия можно распространить на случай более сложных реакций. Так, например, для реакции

Величина -246 МДж/кмоль - это значение энергии образования воды, усре ненное в интервале температуры от нуля до 3000 К. Приведенное соотноше является еще одним примером уравнения Больцмана.

Если найти дешёвый и простой способ электролиза/фотолиза воды, то мы получим невероятно богатый и чистый источник энергии - водородное топливо. Сгорая в кислороде, водород не образует никаких побочных выделений, кроме воды. Теоретически, электролиз - очень простой процесс: достаточно пропустить электрический ток через воду, и она разделяется на водород и кислород. Но сейчас все разработанные техпроцессы требуют такого большого количества энергии, что электролиз становится невыгодным.

Теперь учёные решили часть головоломки. Исследователи из Технион-Израильского технологического института разработали метод проведения второго из двух шагов окислительно-восстановительной реакции - восстановления - в видимом (солнечном) свете с энергетической эффективностью 100% , значительно превзойдя предыдущий рекорд 58,5%.

Осталось усовершенствовать полуреакцию окисления.

Столь высокой эффективности удалось добиться благодаря тому, что в процессе используется только энергия света. Катализаторами (фотокатализаторами) выступают наностержни длиной 50 нм. Они абсорбируют фотоны от источника освещения - и выдают электроны.

В полуреакции окисления производятся четыре отдельных атома водорода и молекула О 2 (которая не нужна). В полуреакции восстановления четыре атома водорода спариваются в две молекулы H 2 , производя полезную форму водорода - газ H 2 ,

Эффективность 100% означает, что все фотоны, поступившие в систему, участвуют в генерации электронов.

На такой эффективности каждый наностержень генерирует около 100 молекул H 2 в секунду.

Сейчас учёные работают над оптимизацией техпроцесса, который пока что требует щелочной среды с невероятно высоким pH. Такой уровень никак не приемлем для реальных условий эксплуатации.

К тому же, наностержни подвержены коррозии, что тоже не слишком хорошо.

Тем не менее, сегодня человечество стало на шажок ближе к получению неиссякаемого источника чистой энергии в виде водородного топлива.



 


Читайте:



Анализ компетенций Исследовательские компетенции и исследовательская компетентность

Анализ компетенций Исследовательские компетенции и исследовательская компетентность

Разделы: Общепедагогические технологии Важнейшая цель современного профессионального образования – дать будущему специалисту определенный...

Профессиональный таролог наталья луговская Честный способ узнать будущее

Профессиональный таролог наталья луговская Честный способ узнать будущее

Прямое положение карты Двойка Посохов: Двойка Посохов символизирует человека с идеями, амбициями, вынужденного искать компромисс с другими людьми,...

За что любят святого николая

За что любят святого николая

Святой Николай родился в Малой Азии, в провинции Ликия, в городе Патара. Его родители Феофан и Нонна были очень благочестивыми и добрыми людьми....

Романтический ужин, или меню для двоих

Романтический ужин, или меню для двоих

Совсем запутались в рекомендациях, что приготовить на Новый год Свиньи? Не любите составлять списки блюд? Не осталось времени, чтобы подбирать...

feed-image RSS