Главная - Обустройство водоснабжения
Износостойкая нержавеющая сталь: применение и свойства. Износостойкие стали

Износостойкие стали

Конструкционные стали специального назначения

Рессорно-пружинные стали

высокоуглеродистые , содержат 0,5…0,8%С. Применяются для пружин, рессор и других упругих элементов.

Термообработка: закалка + средний отпуск. Структура - троостит отпуска. Свойства: высокие пределы упругости, текучести и выносливости. Рессорно-пружинные стали должны иметь высокую прокаливаемость, пластичность, вязкость, релаксационную стойкость.

Углеродистые стали : 55, 60, 65, 70, 75, 80, 85. Применяются для пружин малого сечения (до 10 мм), эти стали имеют низкую релаксационную стойкость.

Легированные стали . Основными легирующими элементами в рессорно-пружинных сталях являются кремний (1…3% Si), марганец (~1% Мn), хром (~1%Cr), ванадий (~0,15%V), никель (до 1,7%Ni). Их вводят для повышения прокаливаемости, релаксационной стойкости и выносливости.

Кремнистые стали : 55С2, 60С2А, 70С3А применяют для автомобильных рессор, пружин вагонов. Кремний повышает прочность феррита͵ предел упругости, предел текучести, но способствует обезуглероживанию и графитизации. Эти недостатки устраняют добавками Cr, V, W, Ni: 60С2ХА, 65С2ВА, 60С2Н2А. Такие стали применяют для крупных тяжелонагруженных пружин и рессор.

Предел выносливости рессор должна быть повышен в 1,5…2 раза путем поверхностного пластического деформирования: гидроабразивной или дробеструйной обработкой.

Шарикоподшипниковые стали применяются для подшипников качения (шарики, ролики, кольца). Οʜᴎ содержат в среднем 1% углерода, стали должны иметь высокую твердость, износостойкость, контактную выносливость и сквозную прокаливаемость.

Сталь ШХ15 содержит ~1%С и 1,5%Cr. Термообработка: закалка в масле с температуры 820…850°С + низкий отпуск при 150…170°С. Структура – мартенсит и дисперсные карбиды. Сталь ШХ15СГ дополнительно содержит 0,8%Si и 1,2%Mn для повышения прокаливаемости, и применяется для крупногабаритных подшипников.

Износостойкая аустенитная сталь Гадфильда 110Г13Л содержит 1,1%С, 13%Mn, (Л–литейная). Структура после литья: аустенит легированный + карбиды (Fe,Mn)3С. Для растворения хрупких карбидов и получения однородной аустенитной структуры сталь подвергают закалке в воде от температуры 1100°С.

Сталь обладает высокой износостойкостью в условиях динамического износа, благодаря способности аустенита к деформационному упрочнению (наклепу). При ударных нагрузках в поверхностном слое по границам зерна аустенита выделяются карбиды марганца. Это приводит к обеднению аустенита углеродом и легирующими элементами. В результате температуры МН и МК повышаются, аустенит частично превращается в мартенсит, что повышает твердость и износостойкость.

Применение: траки гусеничных машин, ковши экскаваторов, крестовины желœезнодорожных путей и т.п.

Износостойкие стали - понятие и виды. Классификация и особенности категории "Износостойкие стали" 2014, 2015.

Износостойкая нержавеющая сталь обладает устойчивостью к износу и коррозии. Изготовленные из нее изделия имеют длительный срок эксплуатации. Нержавейка включает марки AISI 410, 420, 430, которые отличаются содержанием углерода.

Применение

Нержавеющий износостойкий металл используется для изготовления изделий, к которым предъявляются повышенные прочностные характеристики. Из него производят пружины, поршни, измерительный и режущий инструмент, иглы карбюраторов, узлы агрегатов, работающих в агрессивных средах. Материал присутствует в составе фильтров, элементов котлов и турбин, износостойких прокладок и других изделий.

Износостойкая нержавеющая сталь требуется для производства устройств, которые контактируют с пищевыми продуктами. Из нержавейки AISI 430 выпускают комплектующие и узлы агрегатов, использующихся в виноделии и спиртовой отрасли. Материал необходим для производства технологической оснастки в пищевой промышленности.

Характеристики

Износостойкая нержавейющая сталь , купить которую рекомендуется в компании «Глобус сталь», отличается следующими свойствами:

Повышенной износостойкостью, получаемую термообработкой;

Пластичностью;

Жаростойкостью;

Невосприимчивостью коррозии;

Ударной вязкостью.

В отожженном состоянии металл марки AISI 420 имеет структуру, представляющую смесь карбида и феррита. При его нагреве до температур порядка 1000 °C и водном или масляном закаливании возникает мартенсит, имеющий твердость, пропорциональную объему содержащегося углерода. Твердость и устойчивость к износу нержавейки повышается благодаря образованию в структуре материала карбидов хрома.

AISI 430 ферритно-хромистая сталь, обладающая высокими механическими качествами и прочностью. Это достигается низкой долей углерода и повышенным содержанием хрома. Металл хорошо деформируется, поэтому находит широкое применение при штамповке изделий. Хромистые низкоуглеродистые металлы проявляют высокую устойчивость к коррозионным процессам, происходящим в серосодержащих средах. Свойства стали марки 430 обуславливают ее применение в газовой и нефтеперерабатывающей промышленности. Высокая теплопроводность нержавейки способствует ее использованию в системах теплообмена. Материал обладает малой удельной теплоемкостью. Приобрести качественный металл рекомендуется в компании «Глобус сталь».

К износостойким сталям относится сталь 110Г13Л (сталь Гадфильда). Эта сталь имеет следующий химический состав: 1,25 % углерода, 13 % марганца, 1 % хрома, 1 % никеля. Сталь Гадфильда при низкой начальной твёрдости (1800–2200 НВ) успешно работает на износ в условиях абразивного трения, сопровождаемого воздействием высокого давления и больших динамических (ударных) нагрузок. После литья структура стали
состоит из аустенита и избыточных карбидов марганца и железа (Fe, Mn) 3 С. Если в результате кристаллизации карбиды выделились по границам аустенитных зерен, то отливки закаливают в воде с температуры 1050–1100 о С, при этом образуется однофазная аустенитная структура.
В таком состоянии сталь имеет высокую пластичность δ = 34–53 %,
ψ = 34–43 %, низкую твёрдость 1800–2200 МПа и невысокую прочность σ в = 830–654 МПа. У этой стали повышенная способность упрочняться в процессе холодной пластической деформации. Так, при пластической деформации, равной 70 %, твёрдость стали возрастает с 2100 до 5300 НВ. Высокая износостойкость стали достигается не только деформированным упрочнением аустенита, но и образованием мартенсита с гексагональной решеткой.

Эти стали контролируются на содержание фосфора, так как при повышенном его содержании сталь 110Г13Л хладноломка. Если фосфора в стали более 0,05 %, по границам зерна образуется хрупкая фосфидная эвтектика, на которой зарождается и растет хрупкая трещина при низких температурах. При использовании стали в северных районах содержание фосфора должно быть равно или менее 0,02–0,03 %.

Высокая вязкость аустенита наряду с достаточной прочностью и износоустойчивостью делает сталь Гадфильда незаменимым материалом для деталей, работающих на износ и удар одновременно. Из этих сталей изготавливают траки гусеничных машин, щеки дробилок, зубья ковшей экскаваторов и т. д.

Для изделий, подвергающихся износу в результате действия потока жидкости или газа, рекомендованы стали 30Х10Г10, 0Х14Г12М обладающие высокой кавитационной стойкостью вследствие образования на поверхности мартенсита деформации при гидравлических ударах.

Недостатком износостойких сталей является плохая обрабатываемость резанием, поэтому детали из них чаще всего изготавливают литьём без механической обработки.

Конец работы -

Эта тема принадлежит разделу:

МАТЕРИАЛОВЕДЕНИЕ

МАТЕРИАЛОВЕДЕНИЕ Учебник Под редакцией доктора технических наук профессора В С Кушнера... УДК... ББК я...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

МАТЕРИАЛОВЕДЕНИЕ
Учебник Под редакцией доктора технических наук, профессора В. С. Кушнера Допущено Учебно-методическим объединени

Строение сплавов
Сплавы – важные вещества, получаемые сплавлением или спеканием двух или нескольких элементов периодической системы, называемых компонентами. Сплав считается металличес

Процесса кристаллизации
Любое вещество может находиться в трех агрегатных состояниях – газообразном, жидком и твердом. Изменение агрегатного состояния происходит при определенных температурах. Температура

Процесса кристаллизации
В жидком состоянии атомы вещества вследствие теплового движения перемещаются беспорядочно. В то же время в жидкости имеются группировки атомов небольшого объема, в пределах которых

Превращения в твердом состоянии. Полиморфизм
Образование новых кристаллов в твердом кристаллическом веществе называется вторичной кристаллизацией. Многие металлы в зависимости от температуры могут существовать в разных

Механические свойства материалов
Способность металла сопротивляться воздействию внешних сил характеризуется механическими свойствами. Поэтому при выборе металла для изготовления деталей машин необходимо знать его м

Деформации и напряжения
Напряжение – мера внутренних сил, возникающих в материале под влиянием внешних воздействий (нагрузок, изменения температуры и пр.). Для изучения напряжений через произвольную

Испытание материалов на растяжение и ударную вязкость
Испытания на растяжение относят к самым распространенным видам механических испытаний, при которых определяется прочность и пластичность материала. Результаты экспериментальных исследований механич

Определение твердости
Твердость – способность материала сопротивляться проникновению в него другого, более твердого, материала. Высокой твердостью должны обладать металлорежущие инструменты (резцы, сверла, фрезы

Упругая и пластическая деформации, разрушение
Любая деформация может осуществляться в твердых телах путем относительного смещения атомов. В твердых телах различают упругую деформацию (исчезающую после устранения воздействия, вызвавшего

Наклеп и рекристаллизация
Как следует из диаграмм растяжения, при деформации сталей при комнатной температуре предел текучести увеличивается с ростом деформации, то есть материал в этих условиях упрочняется.

Правило фаз, построение диаграмм состояния
Процесс кристаллизации металлических сплавов и связанные с ним многие закономерности строения сплавов описывают с помощью диаграмм фазового равновесия, которые в удобной граф

Химические соединения
Данная диаграмма получается, когда сплавляемые компоненты образуют устойчивое химическое соединение АnВm , не диссоциирующее при нагреве впло


1. Металлы в твердом состоянии обладают рядом характерных свойств: 1) высокими теплопроводностью и электрической проводимостью в твердом состоянии; 2) увел

Железоуглеродистых сплавов
5. ДИАГРАММА «ЖЕЛЕЗО – УГЛЕРОД (ЦЕМЕНТИТ)» 5.1. Компоненты, фазы и структурные составляющие железоуглеродистых сплавов Железоуглеродистые сп

Изменения структуры сталей при охлаждении
Большинство технологических операций (термическая обработка, обработка давлением и др.) проводят в твердом состоянии. Ниже рассматриваются превращения, протекающие в железоуглеродис

Изменение структуры чугунов при охлаждении
Железоуглеродистые сплавы с содержанием углерода более 2,14 % и имеющие в своей структуре цементит называются белыми чугунами. Рассмотрим превращение в чугунах (рис. 5.4).

ЖЕЛЕЗОУГЛЕРОДИСТЫЕ СПЛАВЫ
В машиностроительном производстве железоуглеродистые сплавы подразделяются на стали (содержание углерода от 0,02 до 2,14 %) и чугуны (содержание углерода от 2,14 до 6,67 %). Стали п

Влияние нагрева и скорости охлаждения углеродистой стали на ее структуру
Термической обработкой называется технологический процесс, включающий нагрев стали до определенной температуры, выдержку при этой температуре и охлаждение с необходимой скоро

Отжиг углеродистых сталей
Термическая обработка – самый распространенный в современной технике способ изменения свойств металлов и сплавов. Термообработку применяют как промежуточную операцию для улучшения т

ЗАКАЛКА И ОТПУСК УГЛЕРОДИСТЫХ СТАЛЕЙ
8.1. Закалка углеродистых сталей Закалка – это процесс термической обработки, заключающийся в нагреве до

Тесты для контроля текущих знаний
1. Твердый раствор внедрения углерода в Feα называется: 1) цементитом; 2) ферритом; 3) аустенитом; 4) ледебуритом.

Назначение легирования
В данном разделе рассматриваются примеси, вводимые в стали в определенных концентрациях с целью изменения их внутреннего строения и свойств. Такие примеси (элементы) называются легирующими (

И механические свойства сталей
Полиморфные состояния железа при образовании твердых растворов введением легирующих элементов смещаются по температуре. Все легирующие элементы по влиянию на полиморфные состояния ж

Влияние легирования на превращения при термообработке
1. При закалке (нагрев, выдержка, охлаждение со скоростью V>Vкр) углеродистых сталей из переохлажденного аустенита образуется мартенсит. Влияние легирующих элементов н

УПРОЧНЕНИЕ СПЛАВОВ
Интерес к упрочнению материалов обусловлен стремлением к уменьшению их расхода, увеличению прочности, износостойкости, коррозионной стойкости деталей, сопротивления хрупкому разруше

Упрочнение легированием
Формирование благоприятной структуры и надежность работы деталей обеспечивают рациональное легирование, измельчение зерна и повышение качества металла. Упрочнение при легир

Упрочнение пластическим деформированием
В результате холодной пластической деформации изменяются свойства металла: повышаются прочность, электросопротивление, снижаются пластичность, плотность, коррозионная стойкость. Это явление назы

Упрочнение термическими методами
Температурное воздействие на различные материалы с целью изменения их структуры и свойств является самым распространенным способом упрочнения в современной технике. Это воздействие может осущест

Цементация стали
Цементацией называется процесс насыщения поверхностного слоя стали углеродом. Различают два основных вида цементации: твердую углеродосодержащую смесь (карбюризаторы) и газов

Азотирование стали
Азотированием называют процесс диффузионного насыщения поверхностного слоя стали азотом при нагреве ее в аммиаке. Азотирование очень сильно повышает твердость поверхностного

Нитроцементация
Процесс одновременного насыщения стали углеродом и азотом в газовой среде называется нитроцементацией. Нитроцементацию проводят при более низких (850–870 °С) по сравнению с ц

Поверхностное упрочнение
Среди методов поверхностного упрочнения наибольшее распространение получили поверхностная закалка, обработка лазером и электроискровое легирование. При поверхностной закалке

Строительные стали
К строительным относятся конструкционные стали, применяемые для изготовления металлических конструкций и сооружений, для армирования железобетона. К низколегированным строительным сталям о

Цементуемые (нитроцементуемые) стали
К машиностроительным относят конструкционные стали, предназначенные для изготовления различных деталей машин, механизмов и отдельных видов машин. Для деталей и изделий находят применение дешевые уг

Улучшаемые стали
Для наиболее ответственных тяжелонагруженных деталей машин применяют легированные стали, подвергаемые улучшению, т. е. закалке с высоким отпуском. Эти стали содержат 0,3–0,5% С, 1–6% легирую

Рессорно-пружинные стали
Рессорно-пружинные стали предназначены для изготовления пружин, упругих элементов и рессор различного назначения. Основными требованиями, предъявляемыми к данным сталям, являются высокое сопротивле

Подшипниковые стали
В процессе работы детали подшипников (шарики, ролики, обоймы) испытывают высокие удельные знакопеременные нагрузки. Стали для подшипников должны обладать высокой твёрдостью и износостойкос

Автоматные стали
Обработка резанием – основной способ изготовления большинства деталей машин и приборов. Обрабатываемость стали зависит от ее механических свойств, теплопроводности, микроструктуры и химического сос

Коррозионная стойкость сталей и сплавов
Коррозия – это термин, используемый для обозначения широкого класса видов нежелательного повреждения металла в результате его химического или электрохимического взаимодействия с окруж

Коррозионностойкие стали
Коррозионностойкими (нержавеющими) называют металлы и сплавы, в которых процесс коррозии развивается с малой скоростью. Коррозионностойкие стали применяют для изготовления деталей машин и об

Жаропрочные стали и сплавы
Жаропрочные стали и сплавы применяют для многих деталей котлов, газовых турбин, реактивных двигателей, ракет, атомных устройств и т. д., работающих при высоких температурах.

Жаростойкие стали и сплавы
Жаростойкость – способность металла сопротивляться окислению в газовой среде или в других окислительных средах при повышенных температурах. Жаропрочные сплавы в принципе долж

Условия работы деформирующих и режущих инструментов, требования к инструментальным материалам
Условия работы деформирующих инструментов (штампов) различаются, прежде всего, тем, нагреваются ли предварительно заготовки или они деформируются в холодном состоянии. Штамповые инструмент

Инструментальные легированные (штамповые) стали
В качестве инструментальных материалов для горячего деформирования применяют легированные инструментальные стали (штамповые стали), которые условно можно разделить на три основные группы:

Режущие инструментальные и быстрорежущие стали
Для режущих инструментов применяются высоколегированные быстрорежущие стали, а также, в небольших количествах, заэвтектоидные углеродистые стали с содержанием углерода 1,0–1, % и су

ТВЕРДЫЕ СПЛАВЫ
14.1. Классификация твердых сплавов и общая характеристика их свойств Применение методов порошковой металлургии в начале 1920-х годов в Германии приве

Режущая керамика
Среди исследовавшихся материалов, которые были бы пригодны для изготовления режущих инструментов, была окись алюминия Al2О3 – корунд. Корунд по своей природе –

Сверхтвердые инструментальные материалы
Сверхтвердыми принято считать инструментальные материалы, имеющие твердость при комнатной температуре НV свыше 35 ГПа. Самый твердый материал на Земле, который издавна прим

Абразивные материалы
При абразивной обработке применяются инструменты на жесткой основе (круги, сегменты, бруски), на гибкой основе (эластичные круги, шкурки, ленты), а также пасты и абразивные зерна. А

Тесты для контроля текущих знаний
1. Какая из сталей относится к автоматным: 1) 40А; 2) А12; 3) 08пс; 4) 18ХГТ. 2. Какая из сталей относится к подшипниковым:

Титан и его сплавы
Важнейшее преимущество титана и титановых сплавов перед другими конструкционными материалами – это высокая удельная прочность и жаропрочность в сочетании с хорошей коррозионной стой

Алюминий и его сплавы
Алюминий – металл серебристо-белого цвета, имеет кристаллическую ГЦК решетку, температуру плавления 660 °С, удельный вес 2,7 г/см3, обладает высокой электропроводностью и

Магний и его сплавы
Магний – металл светло-серого цвета, обладающий наименьшим удельным весом среди металлов – 1,74 г/см3. Имеет гексагональную кристаллическую решетку. Температура плавления – 651°С. Несмот

Полимеры и пластмассы
Полимеры (от греческого polymeres – состоящий из многих частей, многообразный, от poly – много и meros – доля, часть) – соединения с высокой молекулярной массой, молекулы которых состоят из

Резиновые и клеящие материалы
Резиной (от латинского resina – смола) называется продукт специальной обработки (вулканизации) смеси каучука и серы с различными добавками (наполнители, пластификаторы, активаторы вулканизац

Стекло, ситаллы, графит
Стекло неорганическое – прозрачный (бесцветный или окрашенный) хрупкий материал, получаемый при остывании расплава, содержащего стеклообразующие компоненты (оксиды кремния, бора, алюминия, ф

Композиционные материалы
Композиционными материалами, или композитами, называют материалы, состоящие из сильно различающихся по свойствам друг от друга, взаимно нерастворимых компонентов. Тр

Композиционные материалы с металлической матрицей
К этому виду композиционных материалов относятся материалы типа САП (спеченная алюминиевая пудра), которые представляют собой алюминий, упрочненный дисперсными частицами оксида алюминия. Алюминиевы

Композиционные материалы с неметаллической матрицей
Композиционные материалы с неметаллической матрицей нашли широкое применение в промышленности. В качестве неметаллических матриц используют полимерные, углеродные и керамические материалы. Из полим

Тесты для контроля текущих знаний
1. Титан имеет две полиморфические модификации. При какой температуре происходит полиморфное превращение? 1) 950 °С. 2) 882,5 °С. 3) 911 °С. 4) 768 °С.

Библиографический список
1. Физическое металловедение: справ. Т. 1, 2, 3; под ред. У. Р. Кана

Изготавливает детали из импортных высококачественных износостойких сталей по эскизам и чертежам заказчиков.

Износостойкие стали :

  • российского производства: 18ХГНМФР
  • импортного производства: hardox , raex , fora , xar

Износостойкие стали описываются как "феномен металлических поверхностей", которые перемещаются относительно друг друга получения изношены из-за царапин на поверхности друг с другом или в связи с металлической адгезии. Свойства износостойких сталей дает им возможность противостоять износу, из-за трения, удара или сжимающих нагрузок от внешних факторов, таких как цемент, песок, камни и т.д., и предназначены для использования в строительстве оборудования и для замены изношенных деталей. Самосвальные кузова, подъемно-транспортное оборудование и дробильные машины, например, подвергаются непрерывному, абразивному и ударному износу. В качестве решения, специальные конструкционные стали были разработаны, которые обладают высокой устойчивостью к износу и истиранию. Факторы, влияющие на износостойкость сталей. Есть четыре основных фактора, которые имеют значительное влияние на износостойкость сталей. Это (I) термообработка, (II) легирующих добавок, (III) влияние содержания углерода, и (IV) эффекты карбидов, как первичный, так и вторичный. Большой фактором, влияющим на износостойкость является "твердость". В общем, износ возрастает сопротивление как материала становится все труднее. Существует прямая связь между твердостью и износостойкостью. Сопротивление стальной поверхности от износа в первую очередь зависит от "эффективной" твердости в результате разрушающего действия абразивных частиц и зависит от деформационного упрочнения скорость стали под применяемых условий. Факторы, влияющие на пластическую деформацию, например, размера зерна, температура рекристаллизации, твердость, скорость деформации, также влияют на износ сталей. В отличие от монокристаллов, имеющих свободные границы, зерна поликристаллического стали находятся под влиянием их neighours в процессе деформации, их действие на ограничения деформации мере, когда средний диаметр зерна больше, чем микроскопических областей контакта. Таким образом связываться через большое количество зерен резко снижает скорость износа. Поэтому большой размер зерна нежелательно для хорошей износостойкостью свойства стали. Оксидная пленка выпускается в воздух в результате механического окисления предотвращает контакт металл / металл и снижает скорость износа до тех пор, пока слой оксида остается связан с поверхностью. Стали которые противостоят эффекту окисления, скорее всего, обладают тяжелой адгезией и переносом металла, особенно если они также обладают низкой прокаливаемостью. Текстура поверхности износа дорожки значительной степени зависит от микроструктуры материала. Разрывная структура является преимуществом в Одер ингибировать серьезный рост зерна. Таким образом углеродистые стали менее подвержены износу, чем однородного нержавеющей стали. Из-за структуры феррито-перлитной стали в С износа ограничена ферритового компонента и, следовательно, только за счет увеличения углерода, содержание феррита может быть уменьшено и твердость может быть увеличена в результате чего в увеличении износа тивление. Закалка становится легко, как количество углерода возрастает. Если количество углерода превышает 0,6%, твердость закаленного становится почти постоянным. Хотя когда твердость становится постоянной, износостойкость не станет стабильным в этой точке, но увеличивает износостойкость далее при увеличении содержания углерода. Когда стали материал закаленное, утюг и углерод вместе и материальные превращается в мартенсит. Это мартенсит является эффективным для износостойкости. Однако в высокой углеродистой стали или высоколегированной стали, не весь материал превращается в мартенсит при закалке и отжиге, и около 20% до 30% материала остается аустенита. Это остаточный аустенит не хорошо для износостойкости. Наличие сплава карбидов повышает износостойкость сталей. Следовательно легирующие элементы, такие как хром, ванадий, вольфрам. молибден способствуют износостойкости в сталях. Карбиды будучи самым трудным компонентом в микроструктуре оказывает решающее влияние на износостойкость. Кроме того, чем меньше размер карбидов в стали, тем выше будет его износостойкость. Есть три основных пути укрепления структуры сталей по (I) легирования, (II) термическая обработка (II) наклеп. Эффект упрочнения на углеродистых сталей на износостойкость показано на фиг.1. износостойкость Рис. 1

Отношения твердости и упрочнения Пример износостойких сталей Износостойкие специальные конструкционные стали являются, как правило, закаленного или закалки и отпуска, и есть прекрасная мартенситной или мартенситной-бейнитный микроструктуру. Закаленной и отпущенной стали приспособлены для различных приложений с достаточной прочности и стойкости достигается либо за счет процесса термообработки или термомеханической прокатки. Твердость этих сталей предназначена, чтобы иметь требуемую износостойкость вместе с необходимой жесткостью в экономичным способом. Эти стали производятся в толщинах до 120 мм. Они производятся под торговыми названиями XAR, BRINAR, DILLIDUR и HARDOX т.д. Нормализованная специальная конструкционная сталь с твердостью 300 HB теперь доступен для конструкций, подвергающихся низким или умеренным уровнем износа, таких как захватов металлолома, в то время как HB сорт 600 отвечает экстремальные требования износостойкости. Покрытие твердости спектр от 300 до 600 НВ, подходящий материал, таким образом, доступны каждый тип износа подвергается применения. Сорт наиболее используется в настоящее время является сталь с твердостью 400 НВ, что составляет около пяти раз столь прочным, как обычной конструкционной стали. Стали с 450 HB, еще одного модифицированного сорта, показать даже более высокую твердость и, в то же время, хорошую прочность. Это позволяет реализовать более стабильных и легких конструкций, которые также высокой устойчивостью к износу воздействия. Основными направлениями использования для HB стали 450 включают производство самосвальных кузовов и режущими кромками. Все износ стойких сталей содержат хром в качестве легирующей добавки, которая оказалась очень эффективной, особенно в странах с низким кислоты СМИ. Высокая прочность обеспечивает хорошую стабильность формы и, таким образом, немного деформации. Из тонкого листового металла, позволяющие большую чистую нагрузку также возможны. Стали имеют уровень прочности, что гарантирует высокую ударопрочность даже при самых сложных условиях, таких как суб минусовых температурах, например. Носите сопротивление стали не представляют никаких проблем при воздействии пламени, плазменной и лазерной резки. Они показывают хорошую свариваемость и низкой чувствительностью к холодному растрескиванию. Аустенитная марганца (Mn) стали является очень жестким и пластичный материал, обладающий высокой ударной вязкости. Mn сталь представляет собой мягкий материал, имеющий первоначальную твердость около 220 до 240 НВ. Износостойкий из Mn стали основана на явлении упрочнения. Когда поверхность Mn стали в условиях интенсивной нагрузки воздействия или сжимающей нагрузки, он твердеет от поверхности, а основной материал остается жестким. Глубина и твердость рабочей закаленной поверхности изменяются в зависимости от применения и Mn марки стали. Работа закаленный слой может быть 10 мм до 15 мм глубиной и твердость может быть до 560 HB в первичных обращений. Соотношение Mn / C, и количество хрома также относятся к желаемой износостойкости этих сталей.

Износостойкие стали

Конструкционные стали специального назначения

Рессорно-пружинные стали

высокоуглеродистые , содержат 0,5…0,8%С. Применяются для пружин, рессор и других упругих элементов.

Термообработка: закалка + средний отпуск. Структура - троостит отпуска. Свойства: высокие пределы упругости, текучести и выносливости. Рессорно-пружинные стали должны иметь высокую прокаливаемость, пластичность, вязкость, релаксационную стойкость.

Углеродистые стали : 55, 60, 65, 70, 75, 80, 85. Применяются для пружин малого сечения (до 10 мм), эти стали имеют низкую релаксационную стойкость.

Легированные стали . Основными легирующими элементами в рессорно-пружинных сталях являются кремний (1…3% Si), марганец (~1% Мn), хром (~1%Cr), ванадий (~0,15%V), никель (до 1,7%Ni). Их вводят для повышения прокаливаемости, релаксационной стойкости и выносливости.

Кремнистые стали : 55С2, 60С2А, 70С3А применяют для автомобильных рессор, пружин вагонов. Кремний повышает прочность феррита͵ предел упругости, предел текучести, но способствует обезуглероживанию и графитизации. Эти недостатки устраняют добавками Cr, V, W, Ni: 60С2ХА, 65С2ВА, 60С2Н2А. Такие стали применяют для крупных тяжелонагруженных пружин и рессор.

Предел выносливости рессор должна быть повышен в 1,5…2 раза путем поверхностного пластического деформирования: гидроабразивной или дробеструйной обработкой.

Шарикоподшипниковые стали применяются для подшипников качения (шарики, ролики, кольца). Οʜᴎ содержат в среднем 1% углерода, стали должны иметь высокую твердость, износостойкость, контактную выносливость и сквозную прокаливаемость.

Сталь ШХ15 содержит ~1%С и 1,5%Cr. Термообработка: закалка в масле с температуры 820…850°С + низкий отпуск при 150…170°С. Структура – мартенсит и дисперсные карбиды. Сталь ШХ15СГ дополнительно содержит 0,8%Si и 1,2%Mn для повышения прокаливаемости, и применяется для крупногабаритных подшипников.

Износостойкая аустенитная сталь Гадфильда 110Г13Л содержит 1,1%С, 13%Mn, (Л–литейная). Структура после литья: аустенит легированный + карбиды (Fe,Mn)3С. Для растворения хрупких карбидов и получения однородной аустенитной структуры сталь подвергают закалке в воде от температуры 1100°С.

Сталь обладает высокой износостойкостью в условиях динамического износа, благодаря способности аустенита к деформационному упрочнению (наклепу). При ударных нагрузках в поверхностном слое по границам зерна аустенита выделяются карбиды марганца. Это приводит к обеднению аустенита углеродом и легирующими элементами. В результате температуры МН и МК повышаются, аустенит частично превращается в мартенсит, что повышает твердость и износостойкость.

Применение: траки гусеничных машин, ковши экскаваторов, крестовины желœезнодорожных путей и т.п.

Износостойкие стали - понятие и виды. Классификация и особенности категории "Износостойкие стали" 2014, 2015.



 


Читайте:



Современный сонник скатерть

Современный сонник скатерть

Увидеть во сне с пятницы на субботу скатерть с пятнами красного вина или крови – к трагическим событиям.Если с понедельника на вторник или с...

ВВП Канады. Экономика Канады. Промышленность и экономическое развитие Канады. ИТ-рынок в Канаде: развитие северной «Кремниевой долины Канадская сфера образования

ВВП Канады. Экономика Канады. Промышленность и экономическое развитие Канады. ИТ-рынок в Канаде: развитие северной «Кремниевой долины Канадская сфера образования

Канада является высокоразвитой благополучной страной. Ее экономика развивалась много лет гармонично. Этому способствовали определенные...

Природа, растения и животные красноярского края

Природа, растения и животные красноярского края

Великий Енисей и тайга, Северный полярный круг и Музей вечной мерзлоты, Тунгуска и Таймыр — все это Красноярский край, один из уникальнейших...

Последняя командировка Михаил Чебоненко, ведущий новостей НТВ

Последняя командировка Михаил Чебоненко, ведущий новостей НТВ

Во время вывода советских войск из Афганистана, в последние самые дни, два фотокора «Известий», Секретарев и Севрук, добились, чтобы им продлили...

feed-image RSS