Главная - Расходные материалы и инструменты
Модуль упругости в чем измеряется. Расчетные сопротивления и модули упругости для строительных материалов

Рис. 4. Рычажный тензометр (тензометр Гуггенбергера): а – общий вид; б – упрощенная схема;

l бт – база тензометра; l бт – изменение базы тензометра; 1 – образец; 2 – винт; 3 – крепежная струбцина;

Цена4 – измерительнаяодного малого шкала;деления5 шкалы– указательнаятензометрастрелка;– С тен з равна 0,0016 – шарнир;мм (0,00017 – неподвижнаясм/дел.). опора; 8 – подвижная опора

Тензометр может измерять деформации только того участка, на котором он расположен, т. е. участка, называемого "базой тензометра" , но не может измерять абсолютные деформации всего образца, если конечно длина образца не равна базе тензометра.

В связи с тем, что измерения в эксперименте будут производиться тензометрами с размерами (базами) значительно меньшими размеров испытываемого образца, то длина и ширина измеряемого участка образца будет ограничиваться базами продольных и поперечных тензометров.

E и – это характеристики материала, а не образца, поэтому E и, полученные при измерении деформаций участка образца, будут такими же, как и при измерении деформаций всего образца.

п. 3. Расположение тензометров и измерительных участков на образце

В лабораторной работе для повышения точности получаемых результатов значения E и будут определяться по двум уча-

сткам испытываемого образца, расположенных на его противоположных гранях (рис. 5).

Модуль упругости - это физическая величина, которая характеризует упругое поведение материала при приложении к нему внешней силы в конкретном направлении. Под упругим поведением материала подразумевается его деформация в упругой области.

История исследования упругости материалов

Физическая теория и их поведения при действии внешних сил была подробно рассмотрена и изучена английским ученым XIX века Томасом Юнгом. Однако сама концепция упругости была развита еще в 1727 году швейцарским математиком, физиком и философом Леонардом Эйлером, а первые эксперименты, связанные с модулем упругости, провел в 1782 году, то есть за 25 лет до работ Томаса Юнга, венецианский математик и философ Якопо Рикатти.

Заслуга заключается в том, что он придал теории упругости стройный современный вид, который впоследствии был оформлен в виде простого, а затем и обобщенного закона Гука.

Физическая природа упругости

Любое тело состоит из атомов, между которыми действуют силы притяжения и отталкивания. Равновесие этих сил обуславливает состояние и параметры вещества при данных условиях. Атомы твердого тела при приложении к ним незначительных внешних сил растяжения или сжатия начинают смещаться, создавая противоположную по направлению и равную по модулю силу, которая стремится вернуть атомы в начальное состояние.

В процессе такого смещения атомов энергия всей системы увеличивается. Эксперименты показывают, что при малых деформациях энергия пропорциональна квадрату величины этих деформаций. Это означает, что сила, будучи производной по энергии, оказывается пропорциональной первой степени величины деформации, то есть зависит от нее линейно. Отвечая на вопрос, что такое модуль упругости, можно сказать, что это коэффициент пропорциональности между силой, действующей на атом, и деформацией, которую эта сила вызывает. Размерность модуля Юнга совпадает с размерностью давления (Паскаль).

Предел упругости

Согласно определению, модуль упругости показывает, какое напряжение нужно приложить к твердому телу, чтобы его деформация составила 100 %. Однако все твердые тела обладают пределом упругости, который равен 1 % деформации. Это означает, что если приложить соответствующее усилие и деформировать тело на величину, меньшую 1 %, тогда после прекращения действия этого усилия тело точно восстанавливает свою первоначальную форму и размеры. При приложении слишком большого усилия, при котором величина деформации превышает 1 %, после прекращения действия внешней силы тело уже не восстановит первоначальные размеры. В последнем случае говорят о существовании остаточной деформации, которая является свидетельством превышения упругого предела данного материала.

Модуль Юнга в действии

Для определения модуля упругости, а также для понимания, как им пользоваться, можно привести простой пример с пружиной. Для этого необходимо взять металлическую пружину и измерить площадь круга, который образуют ее витки. Это делается по простой формуле S = πr², где п - число пи, равное 3,14, а r - радиус витка пружины.

Далее следует замерить длину пружины l 0 без нагрузки. Если повесить какой-либо груз массой m 1 на пружину, тогда она увеличит свою длину до некоторой величины l 1 . Модуль упругости E можно вычислить, исходя из знания закона Гука по формуле: E = m 1 gl 0 /(S(l 1 -l 0)), где g - ускорение свободного падения. В данном случае отметим, что величина деформации пружины в упругой области может намного превышать 1 %.

Знание модуля Юнга позволяет предсказывать величину деформации при действии конкретного напряжения. В данном случае, если повесить на пружину другую массу m 2 , получим следующую величину относительной деформации: d = m 2 g/(SE), где d - относительная деформация в упругой области.

Изотропия и анизотропия

Модуль упругости является характеристикой материала, которая описывает силу связи между его атомами и молекулами, однако конкретный материал может иметь несколько различных модулей Юнга.

Дело в том, что свойства каждого твердого тела зависят от его внутренней структуры. Если свойства одинаковы во всех пространственных направлениях, то речь идет об изотропном материале. Такие вещества имеют однородное строение, поэтому действие внешней силы в различных направлениях на них вызывает одинаковую реакцию со стороны материала. Все аморфные материалы обладают изотропией, например, резина или стекло.

Анизотропия - явление, которое характеризуется зависимостью физических свойств твердого тела или жидкости от направления. Все металлы и сплавы на их основе обладают той или иной кристаллической решеткой, то есть упорядоченным, а не хаотичным расположением ионных остовов. Для таких материалов модуль упругости меняется в зависимости от оси действия внешнего напряжения. Например, металлы с кубической симметрией, к которым относятся алюминий, медь, серебро, тугоплавкие металлы и другие, обладают тремя различными модулями Юнга.

Модуль сдвига

Описание упругих свойств даже изотропного материала не обходится знанием одного модуля Юнга. Поскольку, помимо растяжения и сжатия, на материал можно подействовать сдвиговыми напряжениями или напряжениями кручения. В этом случае он будет реагировать на внешнее усилие иначе. Для описания упругой вводят аналог модуля Юнга, модуль сдвига или модуль упругости второго рода.

Все материалы слабее сопротивляются сдвиговым напряжениям, чем растяжению или сжатию, поэтому значение модуля сдвига для них в 2-3 раза меньше, чем значения модуля Юнга. Так, для титана, модуль Юнга которого равен 107 ГПа, модуль сдвига составляет всего лишь 40 ГПа, для стали эти цифры имеют значения 210 ГПа и 80 ГПа, соответственно.

Модуль упругости дерева

Дерево относится к анизотропным материалам, поскольку древесные волокна ориентированы вдоль конкретного направления. Именно вдоль волокон измеряют модуль упругости древесины, поскольку поперек волокон он меньше на 1-2 порядка. Знание модуля Юнга для дерева играет важную роль и учитывается при проектировании конструкций из деревянных панелей.

Значения модуля упругости древесины для некоторых видов деревьев приведены в таблице ниже.

Следует отметить, что приведенные значения могут отличаться на величину порядка 1 ГПа для конкретного дерева, поскольку на его модуль Юнга влияет плотность древесины и условия произрастания.

Модули сдвига для различных пород деревьев находятся в пределах 1-2 ГПа, например, для сосны это 1,21 ГПа, а для дуба 1,38 ГПа, то есть древесина практически не сопротивляется сдвиговым напряжениям. Данный факт должен учитываться при изготовлении деревянных несущих конструкций, которые проектируют так, чтобы они работали только на растяжение или сжатие.

Характеристики упругости металлов

Если сравнивать с модулем Юнга древесины, то средние значения этой величины для металлов и сплавов на порядок больше, что показано в следующей таблице.

Упругие свойства металлов, которые имеют кубическую сингонию, описываются тремя упругими постоянными. К таким металлам относятся медь, никель, алюминий, железо. Если металл имеет гексагональную сингонию, тогда для описания его упругих характеристик уже необходимо шесть постоянных.

Для металлических систем модуль Юнга измеряют в пределах 0,2 % деформации, поскольку большие значения могут происходить уже в неупругой области.

Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования

œКузбасский государственный технический университет

Кафедра сопротивления материалов

ОПРЕДЕЛЕНИЕ МОДУЛЯ УПРУГОСТИ ПЕРВОГО РОДА

И КОЭФФИЦИЕНТА ПУАССОНА

Методические указания к лабораторной работе по дисциплине œСопротивление материалов для студентов технических специальностей

Составители И. А. Паначев М. Ю. Насонов

Утверждены на заседании кафедры Протокол № 8 от 31.01.2011 Рекомендованы к печати учебно-методической комиссией специальности 150202 Протокол № 6 от 02.03.2011 Электронная копия находится в библиотеке ГУ КузГТУ

Кемерово 2011

Цель работы : определение экспериментальным способом "упругих" постоянных материала – стали ВСт3

модуля продольной упругости (модуля упругости I рода, модуля Юнга);

коэффициента поперечной деформации (коэффициента Пуассона).

” 1. Модуль продольной упругости (модуля упругости I рода, модуль Юнга) – определение и использование

п. 1. Обозначение

Модуль продольной упругости обозначается латинской буквой – " Е ".

п. 2. Смысловое определение

Е – это характеристика жесткости (упругости) материала, показывающая его способность сопротивляться продольному деформированию (растяжению, сжатию) и изгибу.

п. 3. Свойства Е

1. Е – это "упругая" постоянная материала, применение которой справедливо только в пределах линейных упругих деформаций материала, т. е. в пределах действия закона Гука (рис. 1).

Участок действия

закона Гука –

Е = tgα

Рис. 1. Диаграмма растяжения стали ВСт3 А-В – участок линейной зависимости между деформациями – ε

и напряжениями – σ (участок действия закона Гука); В-С – участок нелинейной зависимости между деформациями

и напряжениями

2. Е связывает между собой в формуле закона Гука при растяжении (сжатии) деформации и напряжения и графически оценивается следующим образом Е = tg (см. рис. 1).

3. Материал с большим числовым значением Е является более жестким и требует больших усилий при его деформировании.

4. Большинству материалов соответствует определенное постоянное (константа) значение Е .

5. Значения Е для основных материалов приводятся в справочниках по сопротивлению материалов и справочниках машиностроителя, а в случае отсутствия данных в справочниках – определяются экспериментально.

п. 4. Использование Е

Е используется в сопротивлении материалов при оценке проч-

ности, жесткости и устойчивости элементов конструкций:

1) при расчете на прочность в процессе определения экспериментальным способом напряжений по измеренным деформациям

≤ [σ]; (1) 2) при расчетах на жесткость в процессе теоретического опреде-

ления деформаций

3) при расчете на устойчивость в процессе решения всех типов задач.

п. 5. Численное определение

Е численно равен напряжению, которое могло бы возникнуть

в брусе при его упругом растяжении на 100% (в 2 раза).

Е – характеристика условная, т. к. при его определении условно считают, что любой материал способен упруго деформируясь, увеличиваться в длину бесконечное число раз, хотя известно

– не более чем на 2% (кроме резины, каучука).

Основа 100% принята для удобства применения Е в формулах закона Гука.

Е практически определяют при растяжении образца на долю процента и увеличением полученного напряжения в соответствующее число раз.

Пример 1 : при растяжении образца на = 1% возникающие в образце напряжения – равны, например, 1000 МПа (10 000 кг/см2 ), тогда модуль упругости будет равен

Е = 100 = 100 000 МПа (1 000 000 кг/см2 ). Пример 2: = 0,1% = 100 МПа (1 000 кг/см2 )

Е = 1000 = 100 000 МПа (1 000 000 кг/см2 ).

п. 6. Единицы измерения Е

Е имеет размерность: [кН/см 2 ] или [МПа].

п. 7. Примеры числового значения Е

Модуль упругости Е для разных материалов равен

2,1 104 кН/см2

2,1 105 МПа

2 100 000 кг/см2

1,15 104 кН/см2

1,15 105 МПа

1 150 000 кг/см2

1,0 104 кН/см2

1,0 105 МПа

1 000 000 кг/см2

алюминий – 0,7 104 кН/см2

0,7 105 МПа

700 000 кг/см2

0,15 104 кН/см2

0,15 105 МПа =

150 000 кг/см2

каучук –

0,00008 104 кН/см2 = 0,0008 105 МПа = 80 кг/см2 .

Из имеющихся в списке данных можно сделать вывод о соотношении жесткостей материалов (жесткость материала пропорционально зависит от модуля упругости). Например, сталь в 2 раза жестче меди, поэтому при рассмотрении однотипных образцов, выполненных из стали и меди, для их растяжения на одинаковую длину в границах упругих деформаций, к стальному образцу необходимо прикладывать нагрузку в два раза большую при сравнении с медным.

” 2. Коэффициент поперечной деформации (коэффициент Пуассона) –

определение и использование

п. 1. Обозначение

Коэффициент Пуассона обозначается греческой буквой " " (мю).

п. 2. Смысловое определение

– упругая механическая характеристика материала, характеризующая способность материала деформироваться в попереч-

ном направлении при продольном приложении нагрузки, так как при растяжении образца наряду с его продольным удлинением имеет место еще и его поперечное сужение (рис. 2).

Рис. 2. Продольное и поперечное деформирование образца при растяжении

Из рис. 2 следует, что абсолютные деформации образца

l = l1 – l0 ,

b = b 1 – b 0 ,

где l и b – абсолютное удлинение и абсолютное сужение об-

l 0 и l 1

разца (абсолютные деформации);

– начальная и конечная длина образца;

b 0 и b 1

– начальная и конечная ширина образца.

Если принять, что l 1 l 0

L, а b1 b0 = b,

то относитель-

ные деформации образца будут равны:

L / l

" = b / b,

– относительная продольная и относительная попе-

речная деформации образца (относительное удли-

нение и относительное сужение).

численно равен отношению относительного сужения образца к его относительному удлинению при его продольном деформировании, т. е. отношению между относительными поперечной и продольной деформациями. Это отношение выражается

формулой

п. 3. Свойства

1. Каждому материалу соответствует определенное постоянное значение (константа) .

2. Для большинства материалов численное значение приводится в справочниках по сопротивлению материалов и справочниках машиностроителя, в ином случае определяется экспериментально.

п. 4. Использование

Используется в сопротивлении материалов как коэффициент в формуле обобщенного закона Гука (2) и связывает между собой модули упругости первого и второго рода, что будет рассмотрено далее.

п. 5. Единицы измерения

– безразмерная величина (б/в).

п. 6. Пределы изменения

Обобщенно для известных исследованных изотропных (имеющих одинаковые упругие свойства по всем направлениям) материалов интервал изменения коэффициента Пуассона= 0 0,5.

п.7. Примеры числового значения

Коэффициент Пуассона – для различных видов материа-

пробковое дерево – 0.

3. Описание испытательного оборудования

В лабораторной работе для растяжения образца используется разрывная машина Р-5 (рис. 3).

Рис. 3. Схема разрывной машины Р-5: 1 – рукоять; 2 – гайку; 3 – винт;

9 –силоизмеритель; 10 – тензометры

Установка в ходе эксперимента работает нижеследующим образом. Вращение рукояти /1/ передается через редуктор на гайку /2/, которая вызывает вертикальное перемещение винта /3/. Это приводит к растяжению образца /6/, закрепленного в захватах /4/ и /5/. Усилие в образце создается системой рычагов /7/ и маятником /8/. Величина усилия фиксируется по шкале силоизмерителя /9/. Для определения абсолютных продольных и поперечных деформаций используются тензометры рычажного типа (тензометр Гуггенбергера) /10/.Р

I участок

II участок

Рис. 5. Схема расположения исследуемых участков образца и тензометров на образце

1, 2 – продольные тензометры 3, 4 – поперечные тензометры; (пунктиром показаны тензометры на невидимой грани образца)

Такое расположение тензометров обусловлено тем, что в процессе растяжения образца линии действия растягивающих сил Р не всегда совпадают с продольной осью образца, т. е. имеет место эксцентриситет (смещение линии действия сил Р от продольной оси). Средние показания тензометров, взятые с двух участков образца, дадут истинную картину.

п. 4. Замечания

1. Приложение к образцу дополнительной нагрузки, равной ступени нагружения, должно давать каждый раз одну и ту же величину приращения его длины. Это связано с тем, что растяжение образца в данной лабораторной работе ведется только в пределах упругих свойств материала, в границах действия закона Гука, представляющего собой линейную зависимость между нагрузкой и деформацией. Данное положение позволяет проводить эксперимент многократно, используя в качестве основы постоянную дополнительную нагрузку, равную ступени нагружения – Р , при равномерном увеличении общей нагрузки. Для приведения экспериментальной установки в рабочее

состояние используется предварительная ступень нагруже-

ния – Р 0 .

2. F обр – площадь сечения испытательного образца определяется в соответствии с рис. 6.

h = 0,3 см

а = 8 см

” 3. Рабочие формулы для определения модуля продольной упругости – Е и коэффициента Пуассона –

В лабораторной работе искомые характеристики определяются с учетом ступенчатого способа приращения силы и равенство размеров испытываемых участков базам продольных и поперечных тензометров:

1) Е определяется из формулы (3) – закон Гука (II вид) –

l N l ;

P lбт

l бт F обр

где P

– приращение силы, прикладываемой к образцу (ступень

l бт

нагружения);

– база продольного тензометра;

l бт – изменение базы продольного тензометра; F обр – площадь сечения образца.

Для стальных и железобетонных конструкций применяются углеродистые и низколегированные стали повышенной и высокой прочности. Стали для конструкций классифицируются по способу выплавки, технологии раскисления, химическому составу, способу упрочнения, качеству и назначению, а также по прочности.

По способу выплавки стали делятся на мартеновские, кислородно-конверторные и бессемеровские; по технологии раскисления - на спокойные, полуспокойные и кипящие (в том числе закупоренные кипящие); по способу упрочнения - на холоднодеформированные и термически обработанные (термоупрочненные).

Сталь по назначению подразделяется: на сталь общего назначения - углеродистая горячекатаная обыкновенного качества и сталь разных назначений - углеродистая горячекатаная повышенного качества (низколегированная) и высокой прочности.

Установлены следующие классы прочности стали (по значениям временного сопротивления и предела текучести): С 38/23, С 44/30, С 46/34, С 52/40, С 60/45, С 70/60.

Предел пропорциональности σ пц - напряжение, при котором отступление от линейной зависимости между напряжениями и удлинениями достигает некоторой устанавливаемой техническими условиями или стандартом величины (например, уменьшения тангенса угла наклона касательной к диаграмме растяжения по отношению к оси деформаций на 20 или 33% своего первоначального значения).

Предел упругости σ уп - напряжение, при котором остаточные удлинения достигают некоторой малой величины, устанавливаемой техническими условиями или стандартом (например, 0,001; 0,01% и т. д.). Иногда предел упругости обозначается соответственно допуску σ 0,001 ; σ 0,01 и т. д.

Предел текучести σ т для материалов, имеющих площадку текучести (малоуглеродистая сталь), определяется как напряжение, соответствующее нижней точке площадки текучести; для материалов, не имеющих площадки текучести, определяется условный предел текучести σ 0,2 - напряжение, при котором остаточное удлинение образца достигает 0,2%.

Временное сопротивление (предел прочности) σ в - напряжение, равное отношению наибольшей нагрузки, предшествовавшей разрушению образца, к первоначальной площади сечения образца. Временное сопротивление можно отождествлять с пределом прочности только для хрупких материалов, разрушающихся без образования шейки. Для пластичных материалов это характеристика своеобразной потери устойчивости при растяжении, т. е. характеристика сопротивления значительным пластическим деформациям.

Относительное удлинение при разрыве δ - отношение (обычно в %) приращения расчетной длины образца после разрыва к ее исходной величине. Для длинного круглого образца (l расч =10d) – δ 10 ; для короткого образца (l расч =5d) – δ 5 .

Относительное сужение при разрыве ψ - отношение уменьшения площади наименьшего поперечного сечения образца (после разрыва) к исходной площади поперечного сечения образца.

Условный предел текучести при изгибе σ т.и - нормальное напряжение, вычисленное условно по формулам для упругого изгиба, при котором остаточное удлинение наиболее напряженного крайнего волокна достигает 0,2% или другой величины того же порядка соответственно требованиям технических условий.

Временное сопротивление (предел прочности) при изгибе σ в.и - нормальное напряжение, вычисленное условно по формулам для упругого изгиба и соответствующее наибольшей нагрузке, предшествовавшей излому образца.

Условный предел текучести при кручении τ 0,2 , τ т - касательное напряжение, вычисленное условно по формулам для упругого кручения, при котором остаточные деформации удлинения или сдвига по поверхности образца достигают 0,2% или другой величины того же порядка соответственно требованиям технических условий.

Временное сопротивление (предел прочности) при кручении τ в - касательное напряжение, вычисленное условно по формулам для упругого кручения и соответствующее наибольшему скручивающему моменту, предшествовавшему разрушению образца.

Твердость по Бринеллю НВ - твердость материала, определяемая путем вдавливания в него стального шарика и вычисляемая как частное от деления нагрузки на поверхность полученного отпечатка. Для некоторых материалов существует приблизительно прямая пропорциональность между твердостью НВ и временным сопротивлением; например, для углеродистых сталей σ в ≈ 0,36 НВ.

Твердость по Роквеллу HRC, HRB - твердость материала, определяемая путем вдавливания стального шарика или алмазного конуса стандартных размеров и измеряемая в условных единицах с помощью разных шкал по приращению оставшейся глубины погружения при переходе от малого стандартного груза к большому.

Твердость по Виккерсу HV - твердость материала, определяемая путем вдавливания алмазной четырехгранной пирамиды стандартных размеров и вычисляемая как частное от деления стандартной нагрузки на боковую поверхность полученного отпечатка.

Предел ползучести (условный) - длительно действующее напряжение, при котором скорость или деформация ползучести за определенный промежуток Бремени при данной температуре не превышает величины, установленной техническими условиями.

Предел длительной прочности - напряжение, вызывающее разрушение образца после заданного срока его непрерывного действия при определенной температуре.

Предел выносливости - наибольшее периодически изменяющееся напряжение, которое может выдержать материал без разрушения при большом числе циклов, заданном техническими условиями (например, 10 6 ; 10 7 ; 10 8). Обозначается при симметричном цикле σ -1 (изгиб), σ -1 p (растяжение-сжатие), τ -1 (кручение), при пульсирующем цикле (напряжения меняются от нуля до максимума) соответственно σ 0 , σ 0 p и τ 0 .

Ударная вязкость a k - работа, затраченная на разрушение образца при ударном изгибе, отнесенная к рабочему поперечному сечению образца.

Упругое последействие: прямое - постепенное увеличение деформации после быстрого прекращения роста нагрузки; обратное - сохранение или медленное уменьшение деформации после быстрого снятия нагрузки или остановки разгрузки.

Наклеп - упрочнение металла, происходящее благодаря пластической деформации при процессах холодной обработки (холодной прокатке, вытяжке, волочении).

Старение (механическое) - самопроизвольное длительное изменение механических свойств стали после наклепа, вызванное фазовыми превращениями. Различают естественное старение, протекающее при комнатной температуре, и искусственное старение - при повышенных температурах.

Разрушение стали возможно вязкое (пластичное) - от сдвига, хрупкое - от отрыва. В обоих случаях разрушение состоит в нарушении целостности, в разрыве. Нарушение сплошности может возникнуть при условии накопления энергии, отвечающей величине поверхностной энергии на поверхностях нарушения целостности, и в соответствии с этим расстояние между атомами должно достичь критических величин, при которых происходит нарушение связи между ними.

Работа разрушения - величина всей площади диаграммы растяжения образца в координатах Р-∆l; упругая работа - площадь упругой части той же диаграммы; удельная работа - работа, приходящаяся на единицу объема рабочей части образца и соответствующая площади диаграммы растяжения в координатах σ-ε.

Удельный вес в расчетах принимают равным для стали 7,85, для чугуна 7,2; удельный вес стали с содержанием 0,1% С - 7,06 (в жидком состоянии).

Модуль упругости E стали и другие упругие константы практически не зависят от величины зерна, структуры, соотношений между объемами феррита и перлита, от содержания углерода и других легирующих добавок.

Модуль упругости для прокатной стали, литья, горячекатаной арматуры из сталей марок Ст.5 и Ст.3 Е=2,1·10 6 кГ/см 2 ; для сталей 30ХГ2С и 25Г2С E=2·10 6 кГ/см 2 . Для холоднотянутой круглой и периодического профиля проволоки, а также для холодно-сплющенной арматуры E=1,8·10 6 кГ/см 2 .

Для пучков и прядей высокопрочной проволоки (с параллельным расположением проволок) Е=2·10 6 кГ/см 2 ; для канатов стальных спиральных и канатов (тросов) с металлическим сердечником Е=1,5·10 4 кГ/см 2 ; для тросов с органическим сердечником E=1,3·10 6 кГ/см 2 .

Для отливок из серого чугуна марок СЧ28-48, СЧ24-44, СЧ21-40 и СЧ18-36 E=1·10 6 кГ/см 2 .

Модуль сдвига для прокатной стали G=8,4·10 6 кГ/см 2 .

Коэффициент Пуассона (коэффициент поперечной деформации) μ =0,3.

Таблица 1. Коэффициент линейного расширения α·10 6 в град -1 (средний)
Сталь
В расчетах при обычной температуре
При температуре в °С
200
400
600
800

Углеродистая

Низколегированная



 


Читайте:



Морской окунь, запеченный в фольге

Морской окунь, запеченный в фольге

Новый год – большой, весeлый, долгожданный праздник. В нашей семье к нему заранее готовятся, так как уже сложилась такая традиция, что все самые...

Что можно делать с лисичками грибами

Что можно делать с лисичками грибами

Очень вкусные грибы – лисички. Но наверняка, не каждая хозяйка знает, как их правильно готовить. Поэтому самое время узнать об этом. Как готовить...

Современный сонник скатерть

Современный сонник скатерть

Увидеть во сне с пятницы на субботу скатерть с пятнами красного вина или крови – к трагическим событиям.Если с понедельника на вторник или с...

ВВП Канады. Экономика Канады. Промышленность и экономическое развитие Канады. ИТ-рынок в Канаде: развитие северной «Кремниевой долины Канадская сфера образования

ВВП Канады. Экономика Канады. Промышленность и экономическое развитие Канады. ИТ-рынок в Канаде: развитие северной «Кремниевой долины Канадская сфера образования

Канада является высокоразвитой благополучной страной. Ее экономика развивалась много лет гармонично. Этому способствовали определенные...

feed-image RSS